首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
The root system of 350 loblolly pine trees in 14 plots were excavated utilizing a bulldozer and evaluated according to the annosus root rot (Heterobasidion annosus) symptom expression of the roots, i. e. resin soaked and stringy. The annual increments of the healthy (<1% colonized) and diseased (<1% colonized) groups of trees were compared for each of the last five years growth. There was a significant growth difference between healthy and diseased trees for each of these last five years at about 4% per year or about 19% for the five year total.  相似文献   

2.
Domec JC  Pruyn ML 《Tree physiology》2008,28(10):1493-1504
Effects of trunk girdling on seasonal patterns of xylem water status, water transport and woody tissue metabolic properties were investigated in ponderosa pine (Pinus ponderosa Dougl. ex P. Laws.) trees. At the onset of summer, there was a sharp decrease in stomatal conductance (g(s)) in girdled trees followed by a full recovery after the first major rainfall in September. Eliminating the root as a carbohydrate sink by girdling induced a rapid reversible reduction in g(s). Respiratory potential (a laboratory measure of tissue-level respiration) increased above the girdle (branches and upper trunk) and decreased below the girdle (lower trunk and roots) relative to control trees during the growing season, but the effect was reversed after the first major rainfall. The increase in branch respiratory potential induced by girdling suggests that the decrease in g(s) was caused by the accumulation of carbohydrates above the girdle, which is consistent with an observed increase in leaf mass per area in the girdled trees. Trunk girdling did not affect native xylem embolism or xylem conductivity. Both treated and control trunks experienced loss of xylem conductivity ranging from 10% in spring to 30% in summer. Girdling reduced xylem growth and sapwood to leaf area ratio, which in turn reduced branch leaf specific conductivity (LSC). The girdling-induced reductions in g(s) and transpiration were associated with a decrease in leaf hydraulic conductance. Two years after girdling, when root-to-shoot phloem continuity had been restored, girdled trees had a reduced density of new wood, which increased xylem conductivity and whole-tree LSC, but also vulnerability to embolism.  相似文献   

3.
Fourteen plots of 25 loblolly pines each were excavated by bulldozers in order to determine incidence and severity of Heterobasidion annosus in asymptomatic loblolly pine in Virginia. Of the 350 trees sampled, 85% were infected with H. annosus. Basidiocarps were found on 9% of the sampled trees. The average frequency of roots infected per tree with H. annosus, for all measured trees (trees with > 1% infection evident), was 30% of the primary roots and 31% of the secondary roots. The average root length infected for all the measured trees was 14% for primary roots and 15% for secondary roots.  相似文献   

4.
Ponderosa pine (Pinus ponderosa) in the Black Hills National Forest, SD, USA, was surveyed for Armillaria root disease (ARD). The root pathogen Armillaria ostoyae occurred on ponderosa pine seedlings, saplings, pole‐size trees and large‐diameter trees. The mean incidence of aboveground disease symptoms by stem count was low (0.2%), but in certain areas, the incidence was higher, affecting the regeneration success and tree longevity. Symptomatic ponderosa pine were in areas characterized by having higher elevation, greater annual precipitation, more seedlings, bigger large‐diameter trees and greater odds of past harvesting activity than in areas without root disease. Stump density was positively spatially correlated with root disease incidence. No particular soil type was related to disease occurrence; though, in areas with symptomatic trees, soil available water holding capacity (AWC) was greater and soil permeability was less where root disease was present. Spatial analysis confirmed the relationships found in linear correlations, with soil AWC and stump density positively and soil permeability negatively correlated with per cent infected stems ha?1 and basal area infected.  相似文献   

5.
Root pathogens are one of the principle factors affecting forest productivity in many forests, but few estimates of impact are available. Non-lethal root infections associated with Armillaria root disease were studied to determine their effect on stem volume yield in seven planted Douglas-fir stands and a naturally regenerated stand in British Columbia's southern interior. Trees were removed from the soil and the infection date of a random selection of trees was determined. The volume reduction attributable to disease was determined as a comparison of diseased to disease-free trees over time since infection. Volume reductions per tree ranged from 0 to 30 dm3 (0-27%) depending on the tree age and disease duration. Yield reduction reached 27 m3/ha, averaging 15 m3/ha for the three oldest planted sites by age 30 (7-15%), but was lower at the naturally regenerated site. Yield reduction at the site level correlated best with the number of diseased trees and an unknown site factor. Sites with slow juvenile growth had the least yield reduction owing to their lower incidence of disease over time. Yield was less affected by the proportion of diseased primary roots per tree than by the cumulative time since infection. A few of the diseased trees maintained growth rate after infection similar to disease-free trees; interestingly, these trees were smaller than average to begin with. Overall, trees suffer accumulating growth reduction without recovery. Root diseases prevent full expression of site potential even without mortality. Minimizing disease impact in respect to other forest management goals is also discussed.  相似文献   

6.
On the regeneration and infection of roots of Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) by fungi present in the soil. 167 roots in 4 stands were severed 40–60 cm from the base of the tree. At the proximal cut ends of the thick roots of the 40 years old trees on loamy sand, either replacement roots or callous tissue were formed (only a small percentage of those roots was invaded by rot causing Basidiomycetes), or no new roots and no callus were formed and root rot fungi (Fomes annosus, Coniophora puteana, Resinicium bicolor) had invaded the root sections from the soil. On the root sections of the 35 and 55 years old Douglas firs on sand, with the exception of 2 roots, neither replacement roots nor callus were formed; Fomes and Coniophora had invaded the thicker roots of the older trees from the soil.  相似文献   

7.
Zusammenfassung An den Feinwurzeln von insgesamt zehn gesunden und erkrankten Nadelb?umenAbies alba Mill. undPicea abies [L.] Karst. einiger Standorte wurde die Elementverteilung in den einzelnen Zellen mit einer Lasermikromassenspektrometrie und einer r?ntgenenergiedispersiven Analyse untersucht. Bei gesunden Pflanzen findet man in den Zellw?nden der Rindenschicht und des prim?ren Xylems die Makron?hrstoffe Magnesium, Kalium und insbesondere Calcium; au?erdem lassen sich Natrium und Aluminium nachweisen. Diese Elemente kommen ebenso in den Zellw?nden des prim?ren Xylems vor, allerdings ist die Konzentration an Aluminium gering. Bei den kranken Tannen enth?lt die Rindenschicht Calcium und Magnesium nur in Spuren oder überhaupt nicht; das Aluminium reichert sich in einigen Rindenzellen im Vergleich zu gesunden Pflanzen an. Das prim?re Xylem der kranken Tannen enth?lt nur geringe Calciummengen, das Aluminium ist jedoch in deutlicher Konzentration vorhanden, ebenso Magnesium. Bei den kranken Fichten ist in der Rindenschicht und im Xylem Calcium nicht und Magnesium nur in geringen Mengen gegeben. Die durchschnittliche Aluminiumkonzentration war sogar niedriger als in gesunden Vergleichsb?umen. Die Verarmung an den Makron?hrelementen Calcium und Magnesium in den Feinwurzeln erkrankter B?ume, die auf sauren B?den stocken, mu? sich auf die Pflanze sch?digend auswirken, wobei eine ver?nderte Wechselwirkung der vorhandenen Elemente diese Sch?digung verst?rken dürfte. Die Schlüsselstellung von Aluminium als toxisches Element erscheint hiernach nicht wahrscheinlich, gleichwohl k?nnte es in seiner Wechselwirkung mit anderen Elementen von Bedeutung sein.
Evidence of some chemical elements in the cells of fine roots of healthy and diseased firs (Abies alba Mill.) and diseased spruce trees (Picea abies [L.] Karst.)
Summary The distribution of some elements in individual cells of the fine roots of altogehter ten healthy and diseased conifers (Abies alba Mill. andPicea abies [L.] Karst.) from a few sites was investigated by means of laser-microprobe-mass-spectrometry and X-ray analysis. In healthy trees the major nutrient elements magnesium, potassium and, in particular, calcium are present in the cell walls of the cortex; moreover, sodium and aluminium were identified. These elements are also present in the cell walls of the primary xylem; concentration of aluminium, however, was low. In diseased first the cortex contains calcium and magnesium only in traces or not at all; the aluminium content increases only in some cortical cells compared with healthy trees. The primary xylem of diseased firs contains only small amounts of calcium; aluminium as well as magnesium are distinctly present. In diseased spruce trees the cell walls of the cortex and primary xylem do not contain calcium and only small amounts of magnesium. The average concentration of aluminium was even lower than in the controls from healthy trees. The lack of the major nutrient elements calcium and magnesium in the fine roots of diseased trees growing on acidified soils must necessarily be detrimental to the plant's health; the altered interaction of the elements present may even intensify any given damage. A key position of aluminium being the toxic element cannot be derived from these results but through interaction with other elements it could likely to be of some importance.
  相似文献   

8.
Interior Douglas-fir trees in plantations were assessed for size differences related to the level of diseased neighbours infected with Armillaria ostoyae. The four Douglas-fir stands studied ranged from 25- to 34-year-old, and represented the oldest accessible planted stands in the Interior Cedar Hemlock (ICH) ecosystem in British Columbia. Twenty-three to 25, 10-m radius plots were established in each stand. The spatial coordinates, total height, and diameter at breast height of all live and dead trees in the plots were recorded. Subject trees whose competitors were contained in the 10-m radius plots were also identified. Trees were pulled out of the soil using a mechanical excavator and the root systems were surveyed for evidence of infection by A. ostoyae. Stem disks were taken from each tree at 1.3 m above the ground for a determination of basal area. Increasing proportion of diseased trees in the plots resulted in less total plot basal area, but did not affect the mean basal area or height. Individual subject tree basal area was negatively related to the level of disease in surrounding competitors, opposite to expectations; however, diseased subject trees had reduced height and basal area compared to disease-free subject trees. Increasing competition reduced both the height and basal area of the trees, while regular distribution of all trees increased both total and mean plot basal area but not height. Disease incidence at the plot level and in individual subject trees was mainly affected by the neighbourhood conditions in which it grew, and was also related to disease intensity in the tree root systems. Although disease may alter resource partitioning among trees, the utilization of these resources is mostly limited by the increasing disease incidence as the stands age, the higher probability of larger trees being diseased with time, the occurrence of dead trees in clumps, and the high probability that dead trees will eventually infect live neighbours. The widespread belowground incidence of A. ostoyae in the ICH, its rapid colonization of stumps, and its wide host range can reduce site potential in managed stands.  相似文献   

9.
We examined the effects of increased transpiration demand on xylem hydraulic conductivity and vulnerability to cavitation of mature ponderosa pine (Pinus ponderosa Laws.) by comparing trees growing in contrasting climates. Previous studies determined that trees growing in warm and dry sites (desert) had half the leaf/sapwood area ratio (A(L)/A(S)) and more than twice the transpiration rate of trees growing in cool and moist sites (montane). We predicted that high transpiration rates would be associated with increased specific hydraulic conductivity (K(S)) and increased resistance to xylem cavitation. Desert trees had 19% higher K(S) than montane trees, primarily because of larger tracheid lumen diameters. Predawn water potential and water potential differences between the soil and the shoot were similar for desert and montane trees, suggesting that differences in tracheid anatomy, and therefore K(S), were caused primarily by temperature and evaporative demand, rather than soil drought. Vulnerability to xylem cavitation did not differ between desert and montane populations. A 50% loss in hydraulic conductivity occurred at water potentials between -2.61 and -2.65 MPa, and vulnerability to xylem cavitation did not vary with stem size. Minimum xylem tensions of desert and montane trees did not drop below -2.05 MPa. Foliage turgor loss point did not differ between climate groups and corresponded to mean minimum xylem tensions in the field. In addition to low A(L)/A(S), high K(S) in desert trees may provide a way to increase tree hydraulic conductivity in response to high evaporative demand and prevent xylem tensions from reaching values that cause catastrophic cavitation. In ponderosa pine, the flexible responses of A(L)/A(S) and K(S) to climate may preclude the existence of significant intraspecific variation in the vulnerability of xylem to cavitation.  相似文献   

10.
Feeder root biomass and mycorrhizae of old beech trees (Fagus sylvatica L.) in bavarian forest die-back areas . The feeder root biomass (roots = 2 mm diameter) and the quantity of mycorrhizae of apparently healthy and diseased old beech trees were determined in 7 stands in Bavaria. Canopy die-back correlated with reduction of the feeder root biomass and of mycorrhizae in the topsoil. In the deeper layers of the soil (below 50 cm) there were nearly no differences between the decline classes lor these parameters. The feeder root damage described were encountered in all stand types. For that reason, such damage can be considered, at least for comparable stands, as a general symptom of above ground diseased old beech trees.  相似文献   

11.
The objectives of this study were to assess the range of genotypic variation in the vulnerability of the shoot and root xylem of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings to water-stress-induced cavitation, and to assess the trade-off between vulnerability to cavitation and conductivity per unit of stem cross-sectional area (k(s)), both within a species and within an individual tree. Douglas-fir occupies a broad range of environments and exhibits considerable genetic variation for growth, morphology, and drought hardiness. We chose two populations from each of two varieties (the coastal var. menziesii and the interior var. glauca) to represent environmental extremes of the species. Vulnerability curves were constructed for shoots and roots by plotting the percentage loss in conductivity versus water potential. Vulnerability in shoot and root xylem varied genetically with source climate. Stem xylem differed in vulnerability to cavitation between populations; the most mesic population, coastal wet (CW), was the most susceptible of the four populations. In the roots, the most vulnerable population was again CW; the interior wet (IW) population was moderately susceptible compared with the two dry populations, coastal dry (CD) and interior dry (ID). Root xylem was more susceptible to cavitation than stem xylem and had significantly greater k(s). The trade-off between vulnerability to cavitation and k(s), however, was not evident across populations. The most vulnerable population (CW) had a shoot k(s) of 0.534 +/- 0.067 &mgr;mol m(-2) s(-1) MPa(-1), compared with 0.734 +/- 0.067 &mgr;mol m(-2) s(-1) MPa(-1) for the less vulnerable CD stems. In the roots, IW was more vulnerable than ID, but had the same k(s).  相似文献   

12.
W. Koch 《Forest Pathology》1985,15(4):207-216
Osmotic cell sap potentials of diseased and healthy spruce, fir and beech leaves, fine roots and cortes were determined with the aid of capillary cryoscopy. With one exception (fir needles) the diseased trees showed no reduction in osmotic potential compared to healthy trees.  相似文献   

13.
Cox RM  Malcolm JW 《Tree physiology》1997,17(6):389-396
Stems or roots + stems of potted, 2-year-old paper birch (Betula papyrifera L.) were subjected to simulated winter thaws of various durations in climate-controlled chambers. The simulated thaws induced dieback of shoots of the treated plants. Although the stem thaw treatment did not significantly increase dieback, there were significant (P < 0.05) correlations between growing degree days above 4 degrees C and both shoot dieback and percent reduction in conductive xylem. All trees that received > 60 growing degree days (GDD) > 4 degrees C died back to some extent. Plants in the root + stem thaw treatment that received more than 60 GDD > 4 degrees C showed a significant (P < 0.05) increase in dieback and a significant (P < 0.05) loss of conducting xylem after a period of growth and recovery in the greenhouse, especially in the xylem of 1-year-old stems. Furthermore, higher correlations between GDD > 4 degrees C during a thaw and both the extent of dieback and the loss in conductive xylem were found in trees subjected to the root + stem thaw treatments than in trees exposed only to the stem thaw treatments (P < 0.05). The root + stem thaw treatments also resulted in highly significant relationships (P < 0.05-0.001) between loss in conductive xylem and dieback. The occurrence of dieback in response to winter thaws, and its close correlation with irreversible losses of xylem conductivity due to embolisms, coupled with an inability to refill the xylem because of root damage, support the view that these processes may be key factors in initiating birch decline.  相似文献   

14.
Axial water transport in trees is mainly determined by the gradient of negative water pressure and the structure of conductive xylem elements (i.e. conduits) connecting the fine roots with the foliage. There is still an essential lack of knowledge concerning the relationship between wood structure and hydraulic properties, especially of coarse roots. To this end, the study aimed (1) to work out a novel approach, based on the combination of computer tomography (CT) and light microscopy (LM), for determining the cumulative cross-sectional lumen area of conduits involved in the water transport of coarse roots in European beech (Fagus sylvatica) and Norway spruce (Picea abies) and (2) to demonstrate its adequacy in quantifying the functional relationship between sapwood anatomy and ascending water mass flow in the xylem. The cross-sectional sapwood area of coarse roots was assessed through CT. The cumulative cross-sectional lumen area of conduits in the sapwood (i.e. the lumen area of conductive conduits) was measured by LM in combination with interactive image analysis. The new approach was developed with coarse roots of both the tree species growing in a 60-year-old mixed forest in Bavaria, Germany. The combination of the two methods unveiled spruce to possess a distinct sapwood/heartwood boundary in small-diameter roots, whereas such roots of beech reflected a gradual transition zone; only large-diameter roots displayed a distinct boundary in beech. Additionally, the cumulative lumen area of conductive conduits was found to be approximately 12% of the total coarse root cross-sectional area in both the tree species. The new approach of measuring the conductive lumen area of coarse-root conduits yielded levels of specific sap flow (i.e. axial conductivity) that substantially differed from those derived from commonly applied methods, which were based on sap flow per unit of total cross-sectional root area or xylem cross-sectional area of individual roots. The combination of CT and LM will facilitate functional comparisons of woody roots differing in diameter and of tree species of different anatomical xylem structure.  相似文献   

15.
The stable oxygen isotope ratio (delta(18)O) of tree-ring cellulose is jointly determined by the delta(18)O of xylem water, the delta(18)O of atmospheric water vapor, the humidity of the atmosphere and perhaps by species-specific differences in leaf structure and function. Atmospheric humidity and the delta(18)O of water vapor vary seasonally and annually, but if the canopy atmosphere is well mixed, atmospheric characteristics should be uniform among co-occurring trees. In contrast, xylem water delta(18)O is determined by the delta(18)O of water being drawn from the soil, which varies with depth. If co-occurring trees draw water from different soil depths, this soil-water delta(18)O signal would be manifest as differences in delta(18)O among the trees. We examined the variation in tree ring delta(18)O, over eight decades during the 20th Century, among three species co-occurring in natural forest stands of the northern Rocky Mountains in the USA. We sampled 10 Douglas-firs (Pseudotsuga menziesii (Mirb.) Franco var. glauca), 10 ponderosa pines (Pinus ponderosa Laws.) and seven western white pines (Pinus monticola Dougl.). As expected, variation in atmospheric conditions was recorded in the delta(18)O of the cellulose produced in a given year, but observed climatic correlations with delta(18)O were weak. Significant correlations with June climate data included: daily maximum temperature (r = 0.29), daily minimum temperature (r = -0.25), mean temperature (r = 0.20), mean daily precipitation (r = -0.54), vapor pressure deficit (r = 0.32) and solar radiation (r = 0.44). Lagged effects were observed in Douglas-fir and western white pine. In these species, the delta(18)O of a given annual ring was correlated with the delta(18)O of the previous ring. Ponderosa pine showed no significant autocorrelation. Although the species means were correlated among years (r = 0.67 to 0.76), ponderosa pine was consistently enriched in delta(18)O relative to the other species; differences were close to 2 per thousand and they are steadily increasing. Relative to the mean for the three species, ponderosa pine is becoming steadily more enriched (-1.0 per thousand). In contrast, Douglas-fir is being steadily depleted and western pine is intermediate, with an enrichment of 0.5 per thousand. Because all trees were exposed to the same atmospheric conditions, the differences in delta(18)O observed between species are likely due either to differences in the depth of water extraction or leaf function. If the former, presumably ponderosa pine has steadily taken up more water from near the soil surface and Douglas-fir has shifted uptake to a greater depth. If the latter, we suggest the pronounced changes in leaf-water delta(18)O are a result of changes in leaf structure and function with tree size and age.  相似文献   

16.
泡桐丛枝病发生相关蛋白质的电泳分析   总被引:13,自引:4,他引:13  
对毛泡桐和白花泡桐同龄同方位的病株健叶,病株病叶和健株健叶蛋白质进行了单向和双向SDS聚丙烯酰胺凝胶电泳分析研究。单向电泳结果表明,毛泡桐和白花泡桐病株健叶,病株病叶和健株健叶的蛋白质在种类和数量上存在一定的差异。其明显的蛋白质凝胶扫描谱带分别有22、20和17以及27、21和22条;双向电泳结果表明,毛泡桐与白花泡桐在健株健叶,病株健叶和病株病叶蛋白质变化方面具有一定相似性,即在两种泡桐健株健叶和病株健叶中存在的一种pI6.8,MW24KD蛋白多肽在病株病叶中观察不到。我们认为这种情形可能与发生泡桐丛枝病有一定的关系。  相似文献   

17.
In tall old forests, limitations to water transport may limit maximum tree height and reduce photosynthesis and carbon sequestration. We evaluated the degree to which tall trees could potentially compensate for hydraulic limitations to water transport by increased use of water stored in xylem. Using sap flux measurements in three tree species of the Pacific Northwest, we showed that reliance on stored water increases with tree size and estimated that use of stored water increases photosynthesis. For Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), water stored in xylem accounted for 20 to 25% of total daily water use in 60-m trees, whereas stored water comprised 7% of daily water use in 15-m trees. For Oregon white oak (Quercus garryana Dougl. ex Hook.), water stored in xylem accounted for 10 to 23% of total daily water use in 25-m trees, whereas stored water comprised 9 to 13% of daily water use in 10-m trees. For ponderosa pine (Pinus ponderosa Dougl. ex Laws.), water stored in xylem accounted for 4 to 20% of total daily water use in 36-m trees, whereas stored water comprised 2 to 4% of daily water use in 12-m trees. In 60-m Douglas-fir trees, we estimated that use of stored water supported 18% more photosynthesis on a daily basis than would occur if no stored water were used, whereas 15-m Douglas-fir trees gained 10% greater daily photosynthesis from use of stored water. We conclude that water storage plays a significant role in the water and carbon economy of tall trees and old forests.  相似文献   

18.
Protein was extracted from root bark of 11- and 25-year-old interior Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees that were naturally infected with Armillaria ostoyae (Romagnesi) Herink. The proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Root bark tissue adjacent to infected areas had a significantly higher protein concentration than healthy tissue (P < 0.05), whereas the protein concentration of infected tissue was consistently lower (P < 0.05) than that of healthy tissue. The SDS-PAGE profiles of healthy, infected, and adjacent-to-infected root bark tissues revealed significant differences in concentrations of a 29.3-kDa protein. The N-terminal amino acid sequence of the 29.3-kDa protein displayed significant homology (P = 0.013) to a basic endochitinase. Use of a polyclonal antibody raised against the 29.3-kDa putative endochitinase-like protein (ECP) indicated differences in the quantities of ECP in healthy roots compared with roots infected with A. ostoyae in 11- and 25-year-old interior Douglas-fir trees. The antibody was also used to screen for the presence of the 29.3-kDa protein in roots of 24-year-old coastal Douglas-fir (Pseudotsuga menziesii var. menziesii) trees that were artificially inoculated with and colonized by Phellinus weirii (Murr.) Gilbn. The amount of ECP was elevated in root bark of coastal Douglas-fir in response to P. weirii infection, although in lower quantities relative to those found in the A. ostoyae-interior Douglas-fir pathosystem. The sequence homology of the ECP with a basic chitinase, together with its increased synthesis in response to two fungal pathogens, indicate a possible role for this protein in the defense of Douglas-fir against fungal pathogens.  相似文献   

19.
It has been hypothesized that increasing atmospheric CO(2) concentration enhances accumulation of carbon in fine roots, thereby altering soil carbon dynamics and nutrient cycling. To evaluate possible changes to belowground pools of carbon and nitrogen in response to elevated CO(2), an early and a late successional species of pine (Pinus taeda L. and Pinus ponderosa Dougl. ex Laws, respectively) were grown from seed for 160 days in a 35 or 70 Pa CO(2) partial pressure at low or high temperature (30-year weekly mean and 30-year weekly mean + 5 degrees C) and a soil solution nitrogen concentration of 1 or 5 mM NH(4)NO(3) at the Duke University Phytotron. Seedlings were harvested at monthly intervals and growth parameters of the primary root, secondary root and tap root fractions evaluated. Total root biomass of P. ponderosa showed a positive CO(2) response (105% increase) (P = 0.0001) as a result of significant increases in all root fractions in the elevated CO(2) treatment, but all other main effects and interactions were insignificant. In P. taeda, there were significant interactions between CO(2) and temperature (P = 0.04) and CO(2) and nitrogen (P = 0.04) for total root biomass. An allometric analysis indicated that modulation of the secondary root fraction was the main response of the trees to altered environmental conditions. In P. ponderosa, there was an increase in the secondary root fraction relative to the primary and tap root fractions under conditions of low temperature. In P. taeda, there was a shift in carbon accumulation to the secondary roots relative to the primary roots under low temperature and low nitrogen. Neither species exhibited shifts in carbon accumulation in response to elevated CO(2). We conclude that both species have the potential to increase belowground biomass substantially in response to rising atmospheric CO(2) concentration, and this response is sensitive to temperature and nitrogen in P. taeda. Both species displayed small shifts in belowground carbon accumulation in response to altered temperature and nitrogen that may have substantial ecosystem consequences over time.  相似文献   

20.
Nitrogen (N) storage capacity of cherry (Prunus avium L.) trees grown in sand culture was preconditioned by applying contrasting N supplies for one year. During the spring of the following year, a constant amount of 15N was supplied and the dynamics of N remobilization and root uptake were characterized as a function of internal N status of the trees. To calculate the flux of N through xylem, both xylem sap N concentration and whole-tree transpiration rates were measured. By comparing the cumulative flux of N through the xylem with the amount of N recovered in the new above ground growth, we indirectly evaluated the recycling of N in the xylem, i.e., the amount of N derived from shoot-root translocation that was subsequently reloaded into the xylem. The contrasting N storage capacities imposed during the first year affected both N remobilization and uptake from roots in the following year. Recycling of N in the xylem apparently did not occur during the remobilization of internal reserves (i.e., during the first 6-8 weeks after bud burst). However, when remobilization declined, measurement of the cumulative flux of N through the xylem overestimated the amount of N recovered in the new biomass, allowing the extent of N recycling to be evaluated. The amount of N recycling in the xylem was greater in high-N trees, which also took up less N through their roots than trees preconditioned to have a lower internal N status. This suggests that recycling of N in the xylem is a mechanism by which plants regulate N uptake by roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号