首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
改性芳香二酰基稀土配合物制备木质基发光材料及其性能   总被引:1,自引:0,他引:1  
为提高木材的综合利用率,实现木材的表面功能化改性,首先用3-氨基丙基三乙氧基硅烷(KH550)与邻苯二甲酰氯制备改性配体,然后与Tb(NO_3)_3·6H_2O反应制备出发光改性稀土铽配合物,最后将改性稀土配合物与杨木板材的表面通过水解缩聚反应,制备具有荧光性能的改性木材。通过红外光谱、X射线能谱、扫描电子显微镜及荧光光谱扫描,分析了木材表面的化学元素组成并推测了反应机理,观察了改性前后木材的表面微观形貌。结果表明:改性稀土配合物水解后,通过形成氢键和脱水缩合两个阶段结合到木材表面;改性铽芳香配合物在杨木材的表面形成一层致密的薄膜,生成具有荧光性能的改性木材;当反应时间达到8 h以后,荧光强度趋于稳定,当温度升高到60℃时,荧光强度达到最大,温度继续升高,荧光强度有所降低。  相似文献   

2.
为探究观光木木材在高温处理下木材材色变化,对0.4 mm、0.6 mm、1.6 mm厚观光木薄木及观光木板材进行热处理,用色差计测定处理前后木材的明度指数(L*)、红绿指数(a*)、黄蓝指数(b*),计算出色饱和度差(ΔC*)、色相差(ΔH*)和总体色差(ΔE*)。结果表明,观光木薄木经干燥处理颜色变化不大,可通过干燥处理烘干观光木薄木的同时保证薄木的颜色特性;观光木板材经高温压缩密实化后材色变化明显,170℃热处理45 min时色饱和度差(ΔC*)为3.02,总体色差(ΔE*)为5.47,总色相差(ΔH*)为7.71,经济价值最高。  相似文献   

3.
测定分析了筒状非洲楝Entandrophragma cylindricum,古夷苏木Guibourtia tessmannii和水曲柳Fraxinus mandschurica木材醇酸清漆涂饰前后表面视觉性质的差异。结果表明,涂饰处理降低了3种木材表面的明度(L*)和红绿轴色品指数(a*)值,其中,古夷苏木的L*变化差异最大,明度降低明显;水曲柳的红绿轴色品指数差(Δa*)绝对值最大,相比处理前更偏向绿色;3种木材透明涂饰后的黄蓝轴色品指数(b*)均有所升高,黄蓝轴色品指数差(Δb*)绝对值由大到小分别为水曲柳古夷苏木筒状非洲楝,数值越大越趋于黄色;总体色差(ΔE*)变化差异不大,涂饰对3种木材的总体色差影响不明显。  相似文献   

4.
以改性杨木和辐射松及其对照材为研究对象,采用3种水性涂料分别对其进行涂饰处理,系统地研究了蔗糖/DMDHEU改性处理对响叶杨和辐射松木材涂饰和老化性能的影响规律。结果显示,与未处理木材相比,改性木材表面的水接触角稍微降低,漆膜附着力显著提高,这有助于增强水性涂料在木材表面的润湿性和耐久性。由于改性剂中含有大量未反应的自由羟基,因而导致漆膜在改性木材表面的干燥速度有所降低。经过12个月室外老化测试,改性木材表面颜色变化ΔE*较未处理木材小,改性木材表面产生的开裂比未改性木材少且小。红外光谱分析显示,所有老化木材表面的木质素典型特征峰均消失,表明该改性处理并不能实质性防止木材表面木质素的光降解。  相似文献   

5.
以毛竹(Phyllostachys heterocycla cv.pubescens)材为研究对象,探讨热处理温度(100~200℃)和时间(2h、3h)对去青去黄后的毛竹材表面颜色和平衡含水率的影响规律。结果表明:热处理能使毛竹材表面颜色均匀加深,随着处理温度和时间的增加,毛竹材的明度(L*)、黄蓝色品指数(b*)和平衡含水率显著下降,红绿色品指数(a*)先上升后下降,总体色差(?E*)显著上升,说明热处理后竹材表面颜色逐渐由原色过度到棕褐色;在本研究范围内,通过高温热处理毛竹材的明度、黄蓝色品指数、红绿色品指数最大降低56.45%、54.34%、37.40%,平衡含水率降低46.57%。  相似文献   

6.
由于世界范围内石油资源的紧缺和传统木材用胶黏剂引发的环境问题,使得木材胶黏剂工业重新重视研发豆基胶黏剂。笔者以脱脂豆粉为原料,以尿素、戊二醛为改性试剂制备复合改性木材胶黏剂。分别探讨了尿素浓度、反应温度、反应时间以及戊二醛添加量对改性胶黏剂胶合性能及耐水性的影响,并采用FT-IR分析复合改性胶黏剂样品中活性基团的变化,探索耐水胶合强度增强机理。通过试验结果分析,在试验研究范围内较优合成工艺参数为:尿素浓度为2.0M、反应时间1.0h、反应温度40℃、戊二醛添加量为2.0%(以脱脂豆粉质量为基准)。经30℃热水浸泡处理后,胶合强度达到0.85MPa。  相似文献   

7.
试验采用过热蒸汽作为传热介质和保护气体,对圆盘豆木材进行热处理,热处理温度为160℃、180℃、200℃、220℃,热处理时间为2h、4h、6h、8h,并采用紫外光谱和气-质联用对圆盘豆木粉抽提物进行分析。结果表明,热处理后圆盘豆木材颜色发生明显变化。随着热处理温度升高,木材明度L*下降,红绿色品指数a*变化不明显,黄蓝色品指数b*下降,色差△E*增大,木材表面颜色加深,其主要原因是木素及木材抽提物发生了氧化、还原反应。  相似文献   

8.
【目的】探讨人工林杨木增强-染色复合改性方法及改性材性能,为人工林杨木资源的高效开发利用提供技术支持。【方法】将相同质量分数的酸性大红G水溶液、酸性湖蓝A水溶液、酸性大红G和酸性湖蓝A与水溶性树脂型增强改性剂MUF复配得到的增强-染色复合改性剂,分别对人工林杨木进行真空加压浸渍处理,得到D_G、D_A、MUF-D_G和MUF-D_A4种染色改性材,测试其强度、颜色、耐水色牢度等性能。【结果】1)D_A和D_G染色材的质量增加率分别为-1.69%和-0.65%,密度分别为0.352和0.365 g·cm-3;MUF-D_A和MUF-D_G增强-染色复合改性材的质量增加率分别为42.64%和54.27%,密度分别为0.445和0.510 g·cm~(-3)。与D_A染色材相比,MUF-D_A增强-染色复合改性材的密度、抗弯弹性模量、抗弯强度和抗压强度分别提高26.42%,6.76%,17.63%和54.32%;与D_G染色材相比,MUF-D_G增强-染色复合改性材的密度、抗弯弹性模量、抗弯强度和抗压强度分别提高39.73%,8.58%,18.82%和57.18%。2)D_A染色材和MUF-D_A增强-染色复合改性材染色前后的明度指数差(ΔL*)、红绿指数差(Δa*)和黄蓝指数差(Δb*)均为负值,MUF-D_A增强-染色复合改性材的Δa*值更小、ΔL*和Δb*值均更大,蓝色调更明显;D_G染色材和MUF-D_G增强-染色复合改性材染色前后的Δa*为正值、ΔL*和Δb*为负值,MUF-D_G增强-染色复合改性材的Δa*、ΔL*和Δb*值均更大,红色调更明显;MUF-D_A和MUF-D_G增强-染色复合改性材的色饱和度差(ΔC*)均显著大于相应的D_A和D_G染色材。3)D_A和D_G染色材水浸前后的总色差ΔE*分别为12.92和8.30 NBS,MUF-D_A和MUF-D_G增强-染色复合改性材水浸前后的总色差ΔE*分别为5.94和6.93 NBS,增强-染色复合改性材水浸前后颜色溶蚀程度较小。4)D_A和D_G染色材与未处理材的红外光谱图形态基本一致,MUF-D_A和MUF-D_G增强-染色复合改性材与MUF增强改性材的红外光谱图形态基本一致,没有新的吸收峰产生,吸收峰强度也无明显变化。【结论】1)染料的加入对树脂的增强改性作用影响较小,经增强-染色复合改性处理后人工林杨木的力学性能明显提高;2)与纯染色材相比,增强-染色复合改性材的颜色更鲜明饱满,染色效果更好,且酸性大红G与树脂复配染色效果优于酸性湖蓝A;3)与纯染色材相比,增强-染色复合改性材耐水色牢度较好,其中酸性湖蓝A与树脂复配改性材的耐水色牢度提高明显;4)傅里叶红外光谱(FTIR)分析表明,染料与MUF复配染色过程中没有新的基团生成,随树脂固化沉积于木材内部的染料与MUF和木材之间没有产生新的化学结合。  相似文献   

9.
木材在户外应用过程中易发生开裂、变色、霉变、腐朽等材性劣化现象。利用10%氮羟甲基树脂(1,3-二羟甲基-4,5-二羟基乙烯脲)/20%蔗糖作为改性剂对杨木和辐射松进行改性处理,系统评价了改性处理对木材在哈尔滨户外39个月老化后的性能动态影响。结果显示:老化过程中木材表面的颜色变化主要发生在第1年,未处理木材表面由浅黄色向灰色转变,而氮羟甲基树脂/蔗糖改性木材则由改性后的棕色逐渐褪色至灰色,表明改性处理不能长期保护木材表面颜色。改性处理在最初的12个月内能够明显抑制木材表面微裂,之后抑制效果减弱。老化期间,改性木材含水率及含水率波动均低于未处理材,因此,改性处理有效抑制了木材在户外的变形。傅里叶变换红外光谱和X射线衍射分析显示,改性处理可有效减缓木材三大组分在老化初期(12个月)的降解速度,但经39个月老化后,改性与未改性木材表面木质素浓度和纤维素相对结晶度均下降到相似水平,表明改性处理对木材表面组分的长期保护能力有限。木材老化表面微观形貌观察显示,改性处理抑制了木材表层细胞(尤其是早材细胞)的脱落及变色菌在木材内部生长的深度。氮羟甲基树脂/蔗糖改性能够有效抑制木材在户外老化过程中的含水率波动、变形及变色菌的生长,有助于增强木材的户外耐久性。  相似文献   

10.
分别采用氯化锌、磷酸二氢铵和磷酸为主要成分的3种药剂将木材进行浸渍处理,然后再进行热处理,研究处理温度、药剂及其浓度对木材色泽变化的影响情况。结果表明:3种药剂浸渍木材热处理方法能加速热处理木材的颜色反应,随着温度的升高和药剂浓度的增加,木材的L*、a*、b*明显下降,色饱和度差△C*明显降低,△E*色差逐渐增大;这种处理方法能缩短木材热处理的反应时间,对木材颜色特征起到了明显的催化加速反应作用。  相似文献   

11.
热处理可改变木材的颜色,使其由原来的浅色系逐渐过渡到咖啡色乃至深褐色。以尾叶桉(Eucalyptus urophylla)木材为研究对象,采用完全随机区组设计方法,以180~220℃、处理时间1~5 h的条件对其进行高温热改性处理。结果表明,随着处理时间的延长和处理温度的升高,木材的总体色差ΔE*和色相差ΔH*逐渐增大,而色饱和度差值ΔC*逐渐减小,表明热处理后尾叶桉木材的颜色由原色逐步过渡到深褐色。双因素方差分析结果表明,在0.01水平上,热处理温度和时间均对木材颜色变化有显著影响,热处理温度对桉树木材颜色变化的影响要比热处理时间更为重要。  相似文献   

12.
为探究预热温度对压缩木材的色饱和度差(ΔC*)、色相差(ΔH*)、总体色差(ΔE*)、吸湿率、厚度变化和回弹率的影响,以毛白杨(Populus tomentosa)为研究对象,将其封端、浸水和放置后置于热压机上进行预热12 min,预热温度分别为90、120、150、180℃和210℃,预热完成后在相同温度下压缩5 mm。结果表明:随着预热温度的升高,ΔC*、ΔH*和ΔE*逐渐增大,温度>150℃,三者急剧增大,说明150℃是材色变化的一个关键温度点。随着预热温度的升高,压缩木材的吸湿率、厚度变化和回弹率逐渐减小,温度>150℃,三者急剧减小,说明150℃也是压缩木材尺寸稳定性变化的一个关键温度点。此外,ΔE*和回弹率呈线性负相关,ΔE*越大,其对应的回弹率越小。  相似文献   

13.
为了使呋喃甲醛的制备过程绿色化,以ZrOCl2为原料,利用沉淀-浸渍法初步制备了SO42-/ZrO2固体酸,并应用于催化木糖制备呋喃甲醛的反应。采用L9(34)正交试验确定了适宜的反应条件:木糖质量浓度10 g/L、催化剂用量20 g/L、反应温度220℃、反应时间3 h。之后采用单因素试验考察了催化剂制备条件对呋喃甲醛产率的影响。得到的催化剂最佳制备条件为:H2SO4浸渍浓度1.0 mol/L、焙烧温度550℃、焙烧时间5 h,呋喃甲醛产率达最大值47%。实验结果表明:SO42-/ZrO2固体酸在催化木糖制备呋喃甲醛方面,具有较大发展潜力。  相似文献   

14.
为了使呋喃甲醛的制备过程绿色化,以ZrOCl2为原料,利用沉淀-浸渍法初步制备了SO24-/ZrO2固体酸,并应用于催化木糖制备呋喃甲醛的反应.采用L9(34)正交试验确定了适宜的反应条件:木糖质量浓度10g/L、催化剂用量20 g/L、反应温度220℃、反应时间3h.之后采用单因素试验考察了催化剂制备条件对呋喃甲醛产率的影响.得到的催化剂最佳制备条件为:H2SO4浸渍浓度1.0 mol/L、焙烧温度550℃、焙烧时间5h,呋喃甲醛产率达最大值47%.实验结果表明:SO24-/ZrO2固体酸在催化木糖制备呋喃甲醛方面,具有较大发展潜力.  相似文献   

15.
采用盐酸为催化剂、过硫酸铵为氧化剂,制备酸解氧化淀粉乳液.淀粉在酸解的同时进行氧化,缩短了反应时间,提高了反应效率.经单因素分析试验,确定优化工艺条件:淀粉乳液质量百分数35%,反应时间1 h,盐酸浓度0.5mol·L-1,反应温度55℃,过硫酸铵用量为淀粉干基质量的2.25%.酸解氧化淀粉具有酸解淀粉与氧化淀粉的双重性质.产物具有黏度低、浓度高、抗凝沉性好特点,可用于木材胶黏剂的制造.  相似文献   

16.
以木质素阳离子表面活性剂为改性剂制备有机改性硅藻土,并研究其对溶解和胶体性物质(DCS)模型物聚乙酸乙烯酯(PVAc)的吸附效果。主要探讨了PVAc质量浓度、吸附时间、吸附温度对吸附效果的影响,并在此基础上进一步推算得到了吸附过程的动力学和热力学参数:动力学模型相关系数R2均高于0.99;热力学参数ΔS=-61.39 J/mol,ΔH=-12.03 KJ/mol。实验发现,有机改性硅藻土对PVAc有良好的吸附效果,符合Langmuir吸附模型,升高温度可以增强PVAc在有机硅藻土上的吸附性能,对吸附过程的进行有促进作用;该吸附过程符合伪二阶动力学模型,属于物理吸附过程。  相似文献   

17.
为获得颜色稳定的深色栎木地板,采用Fe_2(SO_4)_3溶液对欧洲栎木材表面进行化学变色处理,并测试其在紫外光及高温高湿环境下的颜色稳定性。研究结果表明:随着Fe_2(SO_4)_3溶液质量分数升高,试样表面颜色趋暗和绿蓝色,质量分数高于6%后颜色基本稳定;紫外光老化96h后,所有试样表面颜色趋于暗、红、黄;在高温高湿老化条件下,不同质量分数溶液处理试样的表面颜色变化趋势不一致,总体趋于更暗、更红、更蓝;两种条件下老化96 h后,8%质量分数溶液处理试样的颜色稳定性最优。Fe_2(SO_4)_3处理能赋予栎木现代感的深色表面,UV漆涂饰能进一步提高其颜色稳定性,建议进一步优化Fe_2(SO_4)_3处理体系,以获得颜色稳定且美观的木材表面化学变色方法。  相似文献   

18.
以尿素为改性剂,亚硫酸氢钠、过硫酸铵(APS)为引发剂,将甲基丙烯酸缩水甘油酯(GMA)接枝到大豆分离蛋白(SPI)上制备改性大豆蛋白胶黏剂基料.研究了尿素浓度及处理时间、引发剂用量、反应温度、单体用量等因素对改性大豆蛋白胶黏剂基料的黏度和耐水性的影响,确定了最佳的工艺条件.最佳工艺条件为:尿素浓度3 mol/L,预处理时间30 min,反应温度50℃,NaHS03、APS和GMA分别占大豆蛋白的质量分数为5%、10%和84%.合成的基料黏度为59.68(mPa.s),胶膜水溶物含量为44.12%,对桦木的拉伸剪切强度为5.85 MPa,基本满足木材胶黏剂要求.红外光谱证明GMA和SPI发生了接枝反应.  相似文献   

19.
笔者主要研究以硼砂和羟乙基纤维素改进甲苯二异氰酸酯(TDI)交联聚乙烯醇(PVA)木材粘合剂。采用正交试验法,探讨实验室制备该粘合剂的工艺条件:如羟乙基纤维素(HEC)、PVA、硼砂、交联剂TDI的加入量、合成反应的温度以及合成反应的时间等因素对该粘合剂粘结性能(包括压缩剪切强度、融冻性、颜色、黏度等)的影响。通过该改性过程能形成一种稳定的单组分、性能优良、原料成本合理、无环境污染的白色木材乳胶。通过正交试验分析得出在该试验设计范围内实验室制备该木材粘合剂最佳合成工艺:硼砂的加入量为0.1g/100 mL、HEC的加入量为0.4g/100 mL、PVA的加入量为10g/100mL、TDI的加入量为3mL/100mL、反应温度为30℃,搅拌反应时间为75min。聚乙烯醇粘合剂通过该改性过程,其压缩剪切强度达到6MPa以上,能形成一种稳定的单组分、性能优良、原料成本合理、无环境污染的白色木材乳胶。  相似文献   

20.
将经3种不同抽提处理的高温热处理欧洲赤松(Pinus sylvestris L.)和山毛榉(Fagus longipetiolata Seem.)木材及其对照材置于氙灯老化箱中加速老化1 008 h,测定老化过程中表面颜色的变化,并使用扫描电镜(SEM)、傅里叶红外光谱(FT-IR)和X射线光电子能谱(XPS)分析老化前后木材表面宏观和微观结构的变化,旨在探究不同抽提物对高温热处理材的光降解进程的影响。结果表明:1)高温热处理材中抽提物的存在有利于缓解其光老化进程,提高热处理材的颜色稳定性;2)碱抽提物对热处理山毛榉表面材色的影响最为显著,其存在有利于延缓老化过程中热处理材表面颜色的变化,苯醇及冷水抽提出的极性抽提物对热处理材的颜色稳定性具有积极作用,冷水抽提后的热处理山毛榉在老化过程中出现射线细胞剥离现象;3)在老化过程中,热处理欧洲赤松的表面颜色变化相对山毛榉大,这是因为热处理欧洲赤松的材色较山毛榉浅,碱抽提物对热处理欧洲赤松颜色稳定性的影响相对较小,而苯醇抽提物及冷水抽出物可提高其耐老化性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号