首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
A model was developed to simulate the effects of competition for soil water and radiation between windbreaks and pearl millet crops in the Sahel. These effects on millet (Pennisetum glaucum (L.) R. Br.) growth were simultaneously simulated for each millet row parallel to the windbreak with small time steps for soil water processes, radiation availability and crop assimilation. The crop routine of the model was based on an existing semi-deterministic model. The soil-water flow was simulated in two dimensions to account for horizontal gradients. Competition for water was expressed by distributing the available soil water between trees and millet in proportion to its uptake rates in a non-competitive situation. Competition for light was incorporated as light reduction through a two-dimensional (windbreak) barrier with time-increasing height and density. Tree parameters were introduced as fixed values or as time-dependent forcing functions. Crop, windbreak trees (Bauhinia rufescens Lam.), and soil data inputs were either field-determined or obtained from literature. Reasonable agreement between simulated and measured soil water content and dry matter production was obtained under the conditions in Niger. Global radiation intensities and soil water contents were simulated satisfactorily as a function of time and the distance from the windbreak. Hence, the model is appropriate to analyse competition for light and water between windbreaks and crops.  相似文献   

2.
The effects of windbreaks on pastures are reviewed, with an emphasis on temperate grazing systems. Mechanisms of plant response to shelter are dealt with in brief. Few papers on measured responses of pasture species to shelter were located in a search of the global literature for the period 1972–97. Except in cold climates, where the benefits of snow-trapping on water availability can be demonstrated, there were few reports of increased production of pasture in response to shelter. A significant result was obtained in a summer rainfall environment in Australia, where a 43% increase in wool production was obtained over three years in small plots sheltered with iron sheeting on the fences. The gain was attributed to increased pasture growth. In New Zealand, one study over three years with a narrow, permeable shelterbelt in a windy, dry summer environment showed a 60% increase in pasture growth in the sheltered zone. However, another study on a high rainfall site with a dense, wide shelterbelt found no substantial shelter effect on pasture. In dry, hot and windy climates there appears to be scope for protecting spray-irrigated pasture with windbreaks. The feasibility of evaluating shelter effects on pastures or crops from old windbreaks is questioned. Variability of soil over the site can not be satisfactorily accounted for and there are problems in defining the true ‘unsheltered’ yield. Shelter effects on pastures could best be determined by comparing production in small completely sheltered plots and open plots. Effects in and near the competitive zone should be measured for living windbreaks. Modelling could then be used to evaluate windbreak systems. We are not yet in a position to provide unequivocal advice to farmers on windbreak outcomes for particular purposes or regions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
In the temperate cropping regions of Australia, the benefits of shelter from windbreaks are often offset by tree-crop competition. The aim of this trial was to quantify microclimate and crop growth close to shade-cloth windbreaks with various orientations, to determine the effect of shelter and above-ground competition on the growth and productivity of wheat (Triticum aestivum) and lupins (Lupinus angustifolius) in the absence of below-ground competition. The trial was conducted in southwestern Australia in 2000 and 2001. The windbreaks modified windspeed, temperature, light and rainfall both spatially and temporally. Consequently, there were spatial differences in the phenology, morphology and productivity of the crops and the incidence of fungal disease adjacent to the windbreaks. Mean grain yield within three times the height of the windbreaks (H) was 97, 102, 82, and 98% of yield beyond 3 H on the northern, eastern, southern and western aspects respectively for wheat and 99, 87, 90, and 87% respectively for lupins. Changes in windspeed and rainfall were not significantly correlated with the relative yield of either crop. However, photosynthetically active radiation was significantly correlated with yield for wheat but not for lupins. Given these responses, and the practical difficulties of reducing below-ground tree-crop competition to the point where light is more limiting for crop growth than water, it is recommended that windbreaks continue to be oriented primarily to protect against damaging winds, rather than to minimise shading in the medium and low rainfall areas of Australia.  相似文献   

4.
Root-pruning is generally recommended as an appropriate treatment to reduce competition for soil water and/or nutrients and suppression of crop yield in areas adjacent to windbreaks. Several recent studies suggest, however, that factors other than soil water might be causing yield reduction at the interface. For two consecutive years, we evaluated root-pruning effects on soil water at the windbreak/crop interface under both cropped (soybean [Glycine max (L) Merr.] variety Iroquois, 1997) and non-cropped (1998) conditions in Mead, Nebraska, USA. Volumetric soil water content near the windbreaks was systematically measured at various soil depths, distances from the windbreak, and windbreak exposures using Time Domain Reflectometry (TDR). Overall differences in soil water content between root-pruned and non-pruned plots in soybean were smaller in magnitude at all distances in both the west (windbreak on the east side) and the east (windbreak on the west side) exposures in 1997, compared with the non-cropped condition in the south exposure in 1998. With a soybean crop in 1997, volumetric soil water content in the east exposure averaged 2.3% greater in the top 30 cm of the soil profile at a distance of 0.75H (H = windbreak height) into the field from the windbreak when compared to the non-pruned treatment. In the west exposure, however, the differences were undetectable at corresponding distance and depth. The increase in soybean yield in root-pruned plots corresponded well with the observed differences in soil water content at various distances, especially in the east exposure. Under a non-cropped condition in 1998, soil water content in the root-pruned plots was significantly greater than the non-pruned plots in the top 45-cm profile, averaging 3.3% at 0.75H and 2.2% at 1.0H. Beyond 1.0H, the increase was not significant. These results agree with the previously reported range of crop yield suppression near windbreaks, indicating that soil water competition between the crop and windbreak is highly related to, and probably plays a leading role in yield suppression within the competition zone.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

5.
In Patagonia, where strong winds are a constraint to agricultural production, live windbreaks are often planted in agricultural fields to protect crops, livestock, and soils from wind hazards. The major factors that determine the efficacy of windbreaks are height, porosity, orientation, length, and location in the landscape. A review of the research on the effect of live windbreaks during 1993 through 2000 is presented in the paper. Porosity and distance from windbreak were found to have major effects on relative windspeed reduction. The greatest degree of protection was for dense windbreaks (windspeed reduction of 85%) at 1H (1H = a distance of one tree height, leeward of the windbreak). Different crops showed a differential yield response to wind stress. The production of garlic (Allium sativum) was not significantly affected by wind. Tulip (Tulipa sp.) bulb yield decreased on average by 25% between 2H and 17H. The production of lucerne (Medicago sativa) at 1H was 40% higher than lucerne grown in open conditions. In contrast, strawberry (Fragaria sp.)and cherry (Prunus avium) were more sensitive to the effect of the wind. Dendrometric models (diameter, site index, volume and crown dynamics) were developed to define the wood potential productivity that could be expected from different site qualities. The prediction of height growth as a function of age, allows the estimation of the area protected by the windbreak. An economic assessment based on realistic estimates of shelter benefits is required to encourage the development of windbreak systems that could also offer other benefits, including erosion control and timber production.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

6.
At sites in the Sahel where windbreaks are used to control wind erosion, management strategies are required to minimise competition for water between trees and crops. Uptake of water by windbreak trees was therefore studied in experiments designed to compare water use among tree species, assess which variables exert most control over transpiration and determine the source of water transpired by windbreak trees. Transpiration and soil-water extraction by Acacia nilotica, Acacia holosericea and Azadirachta indica trees in windbreaks were measured at the ICRISAT Sahelian Centre, Niger. Coupling of windbreaks to the atmosphere was evaluated and a stable isotope technique was used to compare utilisation of groundwater by windbreaks and crops at two sites in Niger with different water table levels. Azadirachta indica used least water, probably as a result of lower stomatal conductances, since windbreaks exhibited good physiological control over transpiration. The potential for competition for water was most severe with Acacia nilotica and Acacia holosericea, as they extracted large quantities of water through lateral roots, and at the location where trees could not access groundwater. At such sites, the effects of competition on crop productivity should be minimised by planting tree species with low water requirements and by using pruning to limit tree transpiration.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

7.
A modelling approach was chosen for analyzing the effects of competition between windbreaks and crops for soil water and radiation in the Sahel. The model has a high spatial and temporal resolution to account for the heterogeneity in a windbreak-cropping system. The model was parameterised for millet (Pennisetum glaucum (L.) R. Br.), the tree species Bauhinia rufescens Lam. and soil characteristics and weather data of Sadoré, Niger. Simulations were run for two wet years (1992 and 1993) and for a dry cropping season (1989). Simulations showed a strong yield reduction up to 2 m from the windbreak due to shading and/or water competition. For Sahelian sites with no access to groundwater, competition for water between trees and crops is likely to occur in the beginning of the rainy season. Water competition was surprisingly highest in the wet year 1992, intermediate in the dry year 1987 and lowest in the wet year 1993. Simulation results indicate that light and water competition depends on rainfall distribution and the period between the seasonal onset of tree and crop growth. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
We measured the shelter effect of model windbreaks in a wind tunnel before and after adjustment thinning based on methods for managing overcrowded windbreaks. One of the aims of this experiment was to determine whether or not the actual thinning done on an actual windbreak would sustain the shelter effect. The shelter effects were evaluated based on the critical wind speed and the shelter distance. Six model windbreaks were set to model a windbreak after the thinning (AT1–6) and one was set to model it before the thinning (BT). In models AT1–3, the trees in the middle part of the windbreak were cut and the trees in both the windward and leeward parts were left. AT1 and AT2 were models that reproduced the actual windbreak after the thinning. In the other three models (AT4–6), which were set as additional thinning models based on AT3, trees in both the windward and leeward parts were cut. The thinning ratios of these models ranged from 21% (AT1) to 84% (AT6). The shelter effects of AT1–3 were sustained or only slightly decreased compared with that of BT. The shelter effects of AT4 (thinning ratio of 63%) and AT5 (79%) were the highest among all of the models. From these results, it was confirmed that the thinning done on an actual windbreak was able to sustain the windbreak’s shelter effect. If the trees at the edges are not felled, the shelter effect of the windbreak can be sustained or improved, even if the thinning is heavier than AT2.  相似文献   

9.
Based on the assumption that with unrestricted water availability, temperature will determine the response of sheltered crops, the effects of a Casuarina glauca Sieb. windbreak on the microclimate, water use and biological production of a lucerne crop were investigated. Degree-days (dd) were used to compute an index for the efficiency of the thermal effects of the shelter on a well- watered lucerne, under favourable (10 to 30 °C) and unfavourable (above 30 °C) temperature conditions. Water use efficiency was considered for two contrasting water regimes, with no water stress or with a large water deficit. In June, under favourable temperature and water availability conditions, temperature efficiency of the windbreak was 39 g m−2 dd−1 at a distance of three times the height of the trees compared to an exposed situation, and water use efficiency increased by 7.1 g mm−1. However, the sheltered conditions induced a decrease in above ground biomass production and water use efficiency when a highly restrictive water regime was applied. In July, daytime temperatures were disadvantageous to the lucerne, and even with a high degree of water availability, there were no significant differences between sheltered and unsheltered conditions. This research may help decision makers to manage windbreak systems by designing an appropriate irrigated area according to the shelter and choosing crops that will best benefit from sheltered conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
The role of shelter in Australia for protecting soils,plants and livestock   总被引:4,自引:0,他引:4  
The purpose of this review is to examine the current knowledge of the role of trees in providing shelter for pastures, crops, and livestock, for controlling erosion of soils and improving productivity and sustainability of agricultural production in Australia — and the extent to which this knowledge has been applied.Land degradation — tree loss and associated soil salinity, water and wind erosion, soil acidification, soil structural decline and nutrient degradation — is evidence that our primary production systems are not sustainable. We have sought increased production without proper consideration of the ecological context of that system. About half of Victoria's crop and pasture lands are affected or at risk, and in Western Australia about 25% of the cleared agricultural land is wind-eroded and 60% is potentially susceptible, salinity affects 0.43 m ha and half of the divertible surface water is affected by salinity. Similar problems occur in other States. At least 43 m ha or 13% of our rangelands are seriously degraded by wind erosion caused by overgrazing, often coinciding with drought or a run of drier years.Minimum tillage and stubble management for erosion control in cropping has been a major extension and research activity in Australian agriculture. Severe weather, combined with imperfect adoption of appropriate grazing and crop management systems, shows the weakness of complete reliance on these methods of erosion control. An effective system must accommodate the impact of extreme events, which are the most damaging. However, the complementary use of windbreaks to reduce soil erosion is rare, and their establishment has not been promoted, despite the wide-spread adoption of this technology by other countries.In the cropping and higher rainfall grazing areas, the systematic planting of 10% of the land in a net of shelterbelts/timberbelts/clusters could achieve a 50% windspeed reduction; this would substantially improve livestock and pasture production in the short and long-term. Wind erosion could be dramatically reduced and crop production probably increased by the use of windbreaks. Wheat and oat yield at Rutherglen (Victoria), and lupin yield at Esperance (Western Australia), were increased in the sheltered zone by 22% and 47%, and 30%, respectively.In semi-arid and dry temperate areas, planting of 5% of the land to shelter could reduce windspeed by 30–50% and soil loss by up to 80%. This planting would also contribute substantially to achieving other objectives of sustainable agriculture. Agroforestry — particularly timberbelts applications — will be important in the long-term strategy for achieving revegetation. If some of the trees yield a marketable product then the adoption of the system will be more readily achieved.In the arid (pastoral) areas there is an urgent need to promote the ethic that preservation and improvement of the perennial grass and shrub vegetation is critical for the protection of the soil and maintenance of land capability. Control of animal grazing remains the sole means of preventing erosion in much of this zone. While satellite imagery allows us to assess the condition of leasehold lands, we have failed to achieve stocking policies that will halt the degradation of our rangelands.  相似文献   

11.
Florida citrus and vegetable crops generate billions of dollars in revenue every year. However, wind, freezing temperatures, hurricanes, and diseases negatively impact production. Windbreaks located perpendicular to the prevailing wind can increase farm production simply by reducing wind and modifying microclimate. Windbreaks can also help in managing pathogens such as citrus canker (Xanthomonas campestris pv. citri). To study the modification of wind speed, temperature, and relative humidity on the leeside of single-row tree windbreaks in southern Florida, automated weather stations were installed in 2007/2008 at 2 m above the ground along transects perpendicular to a eastern redcedar (Juniperus virginiana) and three cadaghi (Corymbia torelliana) (WB1–WB3) windbreaks. All windbreaks reduced wind speed, with minimum wind speed (~5% of the open wind speed) at two times the distance of windbreak height (2H, where H = windbreak height in m) on the leeside of a E. redcedar (~17% porosity) and at 4H (~3–30% of the open wind speed) and 6H (<50% of the open wind speed) on the leeside of cadaghi windbreaks WB1 (~22% porosity) and WB2 (~36% porosity), respectively, when the wind direction was nearly perpendicular to the windbreaks. Wind speed reduction was observed up to 31 times the windbreak height (31H). Cadaghi windbreaks reduced wind speed on the leeside even during a tropical storm event. Temperatures on the leeside of the windbreaks were warmer during the day and cooler near the windbreaks at night compared to temperature in the open fields. This study demonstrates that single-row tree windbreaks can reduce wind and modify the microclimate to enhance crop production for Florida growers.  相似文献   

12.
Relative windspeed reduction was measured behind nine relatively narrow, homogeneous windbreaks in southern Ontario, Canada to assess whether any characteristics of the windspeed reduction curve could be predicted from optical porosity. The latter was determined for each windbreak using high contrast black and white photographic silhouettes on a computer digitizing system. Minimum windspeeds behind the windbreaks ranged from 29 to 71% of open windspeed; these minima were located 2 to 6 multiples of windbreak height away from the windbreak. Optical porosities of the bottom half of the windbreak ranged from 0 to 31%. Multiple regression of the shelter parameters (location and value of minimum relative windspeed) on the independent variables (optical porosity, open windspeed, surface roughness, approaching wind direction relative to the windbreak, average tree diameter and average tree spacing) showed that the minimum relative windspeed could be predicted from the optical porosity of the bottom half of the windbreak. The results suggest that optical porosity can be used to predict minimum relative windspeeds and may therefore be useful as a guide in the field evaluation of windbreaks.  相似文献   

13.
The relationship between open windspeed and windspeed reduction in shelter   总被引:3,自引:0,他引:3  
Windspeed reduction in shelter is generally expressed relatively and is usually assumed to be independent of open windspeed. The purpose of this study was to re-examine the relationship between open windspeed and windspeed reduction in shelter using windspeeds and wind directions measured for two windbreak systems at various distances from the windbreaks and with three windbreak porosities. Optical windbreak porosities were estimated from digitized color photographs using an intelligent (trainable) image processing program. Relative windspeed reduction in shelter was found to be related to the open windspeed. There existed a threshold windspeed at approximately 5 m s–1, below which relative windspeed reduction varied but generally decreased as the open windspeed increased. Above the threshold windspeed, open windspeed did not have an effect on relative windspeed reduction in the sheltered zone. Using the threshold windspeed reduction, the authors propose an index to evaluate the effectiveness of a windbreak for the overal windspeed protection.Published as Journal Series No. 10815 of the Agricultural Research Division, University of Nebraska.  相似文献   

14.
Windbreaks are a major component of agroforestry practices and play an important role in agroforestry ecosystems. They can reduce wind velocity and protect shelter crops from wind damage and soil from wind erosion. Porosity is one of the most important structural parameters that affect wind speed and is widely used in the study of wind protection provided by windbreaks. In this paper, a method to estimate porosity using high-resolution satellite imagery is represented. Porosity was difficult to estimate through the direct use of remote sensing data due to the poor relationship with vegetation indices. Thus, two intermediate variables, that is, CL 2 × LAI and CL × LAI × W, which were highly related to porosity, were selected. Leaf area index (LAI) and average tree crown length (CL) were estimated using vegetation indices, and W, which refers to the width of a windbreak, was identified using object-based image analysis. Porosity was estimated using a statistical relationship between porosity and intermediate variables. The average prediction accuracy of the estimated porosity value was 76.104 %. Based on the estimated porosity value, the windbreaks were grouped into three types, and their efficiency of wind protection was evaluated. The evaluation result indicated that the windbreaks have a very good protective structure in the study area and they can effectively shelter crops from wind damage and erosion. This study can provide a useful guide for studying the wind protection provided by windbreaks on spatial and temporal scales using remote sensing.  相似文献   

15.
Windbreaks are valuable resources in conserving soils and providing crop protection in Great Plains states in the US. Currently, Kansas has no up-to date inventory of windbreaks. The goal of this project was to assist foresters with future windbreak renovation planning and reporting, by outlining a series of semi-automated digital image processing methods that rapidly identify windbreak locations. There were two specific objectives of this research. First, to develop semi-automated methods to identify the location of windbreaks in Kansas, this can be applied to other regions in Kansas and the Great Plains. We used a remote sensing technique known as object-based image analysis (OBIA) to classify windbreaks visible in the color aerial imagery of National Agriculture Imagery Program. We also combined GIS techniques and field survey to complement OBIA in generating windbreak inventory. The techniques successfully located more than 4500, windbreaks covering an approximate area of 2500, hectares in 14 Kansas counties. The second purpose of this research is to determine how well the results of the automated classification schemes match with other available windbreak data and the selected sample collected in the field. The overall accuracy of OBIA method was 58.97 %. OBIA combined with ‘heads up’ digitizing and field survey method yielded better result in identifying and locating windbreaks in the studied counties with overall accuracy of 96 %.  相似文献   

16.
Direct mechanical effects of wind on crops   总被引:1,自引:0,他引:1  
This review describes those mechanisms by which wind directly affects crop growth rates and hence yields. Wind-induced plant movement is capable of altering growth rates and leaf morphology, although this is unlikely to be a major cause of growth differences between sheltered and unsheltered crops grown outdoors. The wind's force can tear leaves or strip them from the plant. Dense plant canopies may suffer abrasion through intermittent or constant rubbing. Soil particles lifted into suspension by the wind have the potential to abrade and damage plant tissue. The wind's force can physically knock plants over, making crops difficult to harvest. Each of these mechanisms operates at a particular time of the growing season. Recovery, and hence final yield, depends on the growth stage and soil/plant moisture status when the damage occurred, the particular species and variety as well as the preceding and subsequent weather. The fact that damage effects are so dependent on the crop and the past weather makes modelling and any simple synthesis of direct wind effects difficult. The most common forms of damage likely in Australia's agricultural regions are from sandblasting and lodging. These damage events will be intermittent – their frequency depending on the local climate. Leaf tearing is likely in broad-leafed horticultural crops, and growth effects are also likely in any windy location. It is not possible to predict what the impact of this damage, and other direct effects, will be on final yields, Based on the results in the literature, protection from damage offered by windbreaks may have as large an effect on yields as incremental microclimate benefits. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Effects of windbreaks on airflow, microclimates and crop yields   总被引:5,自引:1,他引:4  
The mechanisms by which a porous windbreak modifies airflow, microclimates and hence crop yields are addressed, based upon recent wind tunnel experiments, field observations and numerical modelling. This paper is thus an update to the excellent reviews in Brandle (1988). It shows how a turbulent mixing layer initiated at the top of the windbreak dominates the airflow behind a windbreak. This mixing layer spreads vertically as it moves downwind, growing at a rate determined by the turbulence in the approach flow and the windbreak's ‘permeability’. The roughness of the terrain and land-cover upwind, windbreak height and porosity are thus the main controls on the amount and extent of shelter provided by a windbreak. The changes in temperature, humidity, heat and evaporation fluxes given these changes in turbulence are then described. Based on the turbulent mixing layer model, the highly sheltered ‘quiet zone’ will be typically warmer and more humid while further downwind in the ‘wake zone’, cooler and drier conditions would be expected. The careful experimental studies needed to verify these theoretical predictions have not yet been published. Shade is also shown to modify the heating in the quiet zone and, depending on the orientation of the windbreak, can offset the warming in the quiet zone. Lastly, the mechanisms affecting plant productivity are described in light of these airflow and microclimate changes. A major effect of a windbreak is to reduce the incidence of low frequency, high magnitude damage events such as sandblasting or lodging. Microclimate effects, however, do not always improve productivity. For example, while shelter may improve water-use efficiency in irrigated crops by increasing yields and reducing water-use, this may not be the case in dryland agriculture. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Soil erosion by wind is a persistent problem in central Wisconsin. The extent and effectiveness of windbreaks in erosion-prone areas are unknown. We investigated the potential effectiveness of windbreaks established for soil erosion control in Portage County, Wisconsin. Our objectives included quantification of their extent and condition, development of a routine method for field assessment, and compilation of a reference database of windbreak information. We used aerial photographs to identify the windbreak population, and a two-stage, stratified random sampling technique to obtain samples for field evaluation. Variables and attributes examined included species, number of gaps, height, width, porosity, spacing, live crown ratio, crown condition, and a condition rating. Methods included simple photo-interpretation techniques, field measurements, optical scanning techniques, and data manipulation in geographic information systems. We identified over 2600 windbreaks comprising a total extent of 834 km; only a small proportion of this may offer effective protection at critical periods. Collectively, field windbreaks protect a very small proportion only of the county‘s agricultural land area from wind erosion. These results imply a need for increased planting rates, explicit maintenance or renovation of existing barriers, and windbreak designs that are both sustainable and compatible with current agricultural production efforts. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Field windbreaks can increase crop yield within a protected zone. However, they also take land out of crop production and compete with adjacent crops. Although the beneficial aspects are generally recognized, the question arises whether the windbreak will increase crop revenue enough to offset costs over time. Achieving additional yields to offset windbreak costs might be a sufficient incentive for a producer to plant a windbreak. Additional maize (Zea mays) yields necessary to break even with costs are calculated for four typical Midwestern USA field windbreaks: poplar (Populus spp.), mixed tree/shrubs (Populus spp., Acer saccharinum L./Physocarpus spp., Viburnum spp., Cornus spp.), and two and four-row spruce (Picea spp.) windbreaks. Five lifespans, two management and two cost scenarios, and three protected zone widths to account for changing sheltering effects are evaluated. Greatest additional yields are for a 4-row spruce windbreak with intensive management at high cost and a 10-year lifespan: 15.38 Mg ha–1 yr–1 within 6H, 7.69 Mg ha–1 yr–1 within 12H and 6.15 Mg ha–1 yr–1 within 15H. If a 50-year lifespan is implemented, the additional yields are about 11% of those in 10-year lifespan. Smallest additional yields are for a mixed tree/shrubs windbreak with extensive management at low cost and a 50-year lifespan: 0.56 Mg ha–1 yr–1, 0.28 Mg ha–1 yr–1 and 0.22 Mg ha–1 yr–1, respectively. The mixed windbreak is likely to have actual maize yield increases comparable to the added maize yields required to break even as long as the lifespan is 30 years or longer with a minimum protected zone of 12H. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
国外混农林业系统中林木与农作物的相互关系研究进展   总被引:16,自引:1,他引:15  
总结了近年国外混农林业系统中林木和农作物在地上和地下部分的相互作用关系的研究进展。其中林木根系分布与管理研究内容是通过对林木根系类型的筛选,选择与农作物根系矛盾较小的树种;水分关系研究中探讨了林木与农作物的水分矛盾;养分关系中主要说明林木枝叶对农作物的有利作用和它们对养分的竞争作用;他感作用研究指出某些树种的枝叶虽然有一定的毒性,但对农作物生长影响不大;地上部分的研究说明,林木对作物的遮荫作用是主要的,而作物对林木的影响是次要的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号