首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 651 毫秒
1.
Cox RM  Zhu XB 《Tree physiology》2003,23(9):615-624
Yellow birch seedlings (Betula alleghaniensis Britt.) that had lost more than 90% of their stem hydraulic conductivity during ambient winter temperatures were exposed to 0 and 20 days of a simulated winter thaw followed by a 48-h freezing treatment at 0, -5, -10, -20 and -30 degrees C. After measuring freezing injury to shoots and roots, the seedlings were placed in a greenhouse where recovery of xylem conductivity and new growth were measured. Shoot xylem cavitation was measured as percent loss of hydraulic conductivity. Shoot freezing injury was assessed by electrolyte leakage (EL) and root freezing injury was assessed by EL and triphenyl tetrazolium chloride reduction. Seedlings pretreated with thaw had higher stem water contents and suffered more freezing damage to roots and shoots (at -20 and -30 degrees C, respectively) than unthawed seedlings. After 3 weeks in a greenhouse, seedlings from the 0, -5 and -10 degrees C freezing treatments showed complete recovery of xylem conductivity, with substantially increased stem water contents. Poor recovery of hydraulic conductivity was observed only in seedlings that were subjected to freezing treatments at -20 and -30 degrees C, regardless of thaw treatment. Of these embolized seedlings, however, only those not previously thawed showed recovery of hydraulic conductivity or regained stem water content after 9 weeks in the greenhouse. Shoot dieback, bud burst and length of new shoots were significantly related to the extent of stem xylem cavitation and freezing injury. We conclude that (1) the simulated winter thaw predisposed yellow birch seedlings to freezing damage in shoots and roots by dehardening tissues and increasing their water content; (2) root freezing damage in turn affected the seedlings' ability to refill embolized stem xylem, resulting in considerable residual xylem embolism after spring refilling; (3) further recovery of stem xylem conductivity was attributable to growth of new vessels; (4) and the permanent residual embolism, together with root and shoot freezing injury, caused increased dieback, bud mortality and reduced growth of new shoots.  相似文献   

2.
Zhu XB  Cox RM  Arp PA 《Tree physiology》2000,20(8):541-547
Shoot dieback, shoot growth, stem xylem cavitation, stem and root freezing injury, and root pressure were measured in 2-year-old, cold-hardened, potted yellow birch (Betula alleghaniensis Britt.) seedlings that had been subjected to a simulated winter thaw for 0, 5, 10, 19 or 27 days followed by 10 weeks at -10 degrees C. Stem xylem cavitation was determined as percent loss of hydraulic conductivity. Stem freezing injury was measured as electrolyte leakage (EL). Root freezing injury was determined by EL and by triphenyl tetrazolium chloride (TTC) reduction. Thaw duration was significantly correlated with dieback, new shoot growth, stem xylem cavitation, stem and root freezing damage, and root pressure (P < 0.05). In particular, shoot dieback was positively correlated with stem xylem cavitation (P < 0.001), residual stem xylem cavitation (P < 0.01) and root freezing injury (P < 0.010), but only weakly correlated with stem freezing damage (P < 0.05). In roots, freezing damage was negatively correlated with root pressure (P < 0.05), which, in turn, was negatively correlated with residual stem xylem cavitation after root pressure development. In stems, there was no correlation between freezing damage and xylem cavitation. We conclude that long periods of winter thaw followed by freezing resulted in freezing injury to roots concomitant with a reduction in root pressures, leading to poor recovery from freezing-induced xylem embolism.  相似文献   

3.
Cox RM  Malcolm JW 《Tree physiology》1997,17(6):389-396
Stems or roots + stems of potted, 2-year-old paper birch (Betula papyrifera L.) were subjected to simulated winter thaws of various durations in climate-controlled chambers. The simulated thaws induced dieback of shoots of the treated plants. Although the stem thaw treatment did not significantly increase dieback, there were significant (P < 0.05) correlations between growing degree days above 4 degrees C and both shoot dieback and percent reduction in conductive xylem. All trees that received > 60 growing degree days (GDD) > 4 degrees C died back to some extent. Plants in the root + stem thaw treatment that received more than 60 GDD > 4 degrees C showed a significant (P < 0.05) increase in dieback and a significant (P < 0.05) loss of conducting xylem after a period of growth and recovery in the greenhouse, especially in the xylem of 1-year-old stems. Furthermore, higher correlations between GDD > 4 degrees C during a thaw and both the extent of dieback and the loss in conductive xylem were found in trees subjected to the root + stem thaw treatments than in trees exposed only to the stem thaw treatments (P < 0.05). The root + stem thaw treatments also resulted in highly significant relationships (P < 0.05-0.001) between loss in conductive xylem and dieback. The occurrence of dieback in response to winter thaws, and its close correlation with irreversible losses of xylem conductivity due to embolisms, coupled with an inability to refill the xylem because of root damage, support the view that these processes may be key factors in initiating birch decline.  相似文献   

4.
The objectives of this study were to assess the range of genotypic variation in the vulnerability of the shoot and root xylem of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings to water-stress-induced cavitation, and to assess the trade-off between vulnerability to cavitation and conductivity per unit of stem cross-sectional area (k(s)), both within a species and within an individual tree. Douglas-fir occupies a broad range of environments and exhibits considerable genetic variation for growth, morphology, and drought hardiness. We chose two populations from each of two varieties (the coastal var. menziesii and the interior var. glauca) to represent environmental extremes of the species. Vulnerability curves were constructed for shoots and roots by plotting the percentage loss in conductivity versus water potential. Vulnerability in shoot and root xylem varied genetically with source climate. Stem xylem differed in vulnerability to cavitation between populations; the most mesic population, coastal wet (CW), was the most susceptible of the four populations. In the roots, the most vulnerable population was again CW; the interior wet (IW) population was moderately susceptible compared with the two dry populations, coastal dry (CD) and interior dry (ID). Root xylem was more susceptible to cavitation than stem xylem and had significantly greater k(s). The trade-off between vulnerability to cavitation and k(s), however, was not evident across populations. The most vulnerable population (CW) had a shoot k(s) of 0.534 +/- 0.067 &mgr;mol m(-2) s(-1) MPa(-1), compared with 0.734 +/- 0.067 &mgr;mol m(-2) s(-1) MPa(-1) for the less vulnerable CD stems. In the roots, IW was more vulnerable than ID, but had the same k(s).  相似文献   

5.
Bigras  F.J.  Margolis  H.A. 《New Forests》1997,13(1-3):29-49
Damage to containerized forest seedlings due to freezing can occur in the fall or early winter in Canadian forest nurseries. The following spring, damage to shoots and impairment of growth is observed. The objectives of this experiment were to measure the impact of late fall low temperatures (0° to --30°C) on whole seedlings of the three most common species used for reforestation in Quebec: black spruce (BS), white spruce (WS) and jack pine (JP). Impacts of freezing temperatures on (i) whole seedling and apical bud mortality, (ii) shoot growth and root mortality, (iii) stem electrical resistance, (iv) shoot and root water relations, (v) concentrations of N, P, K, Ca, Mg, and total sugars in shoots were assessed. JP showed the highest rate of whole seedling mortality while WS showed the highest rate of apical bud mortality. JP was the most severely affected: destruction of the root system at low temperatures as well as a reduction of shoot growth and stem diameter and a decrease (more negative) in shoot and root water potential. WS showed a reduction of shoot growth despite no apparent damage to the root system at low temperatures. BS was not affected by temperatures as low as --30°C. Nutrient and sugar concentrations were not affected by low temperature treatments.  相似文献   

6.
Seedlings of Betula pendula Roth were grown with their root systems separated between two soil compartments. Four treatments were imposed: (i) adequate irrigation in both compartments (WW, controls); (ii) adequate irrigation in one compartment and drought in the other compartment (WD); (iii) drought in both compartments (DD); and (iv) half of the root system severed and the remainder kept well-watered (root excision, RE). Predawn leaf water potential, stomatal conductance, soil-to-leaf specific hydraulic conductance, and root and leaf growth decreased in DD-treated seedlings, which also displayed severe leaf shedding (30% loss in leaf area). The DD treatment also resulted in increased concentrations of abscisic acid (ABA) and its glucose ester in the xylem sap of roots and shoots compared to concentrations in control seedlings (about 200 versus 20 nM). Despite the difference in xylem sap concentrations, total ABA flux to the shoots was similar in the two treatments (1-2 pmol ABA m(-2) leaf area s(-1)) as a result of reduced transpiration in the DD-treated seedlings. Compared with root growth in control plants, root growth increased in the RE-treated plants and decreased in the drying compartment of the WD treatment; however, the RE and WD treatments only slightly reduced leaf expansion, and had no detectable effects on shoot water relations or ABA concentrations of the root and shoot xylem sap. We conclude that short-term soil water depletion affecting only 50% of the root system does not cause a measurable stress response in birch shoots, despite root growth cessation in the fraction of drying soil.  相似文献   

7.
Shoot growth and dieback were compared among progenies of nursery-grown seedlings of Nothofagus obliqua belonging to seven progenies of the same provenance (Quila-Quina, Argentina). First-year shoots consisted of one growth unit (GU) and second-year shoots of one or two GUs. The probability of development of two GU was similar for all progenies. Progenies were different in terms of shoot size, terminal bud abscission, the extent of shoot dieback after shoot extension and the node of origin of the relay shoot on the first shoot. Plants with a second-year shoot consisting of two GUs had a thicker stem and more nodes than those with single-GU shoots. The selection of N. obliqua seed trees based on architectural traits suitable for forestry development at specific sites must contemplate variability among progenies and their probabilities of successful development under different conditions.  相似文献   

8.
We determined the effects of removal of leaves, stem axillary buds, or the entire shoot on root suckering (adventitious shoot formation by roots) and basal stem sprouts in 3- and 4-year-old potted seedlings of aspen (Populus tremuloides Michx.). The greatest number of root suckers (67.9 +/- 8.5 per plant) emerged after excision of the entire shoot. Defoliated and debudded stems were the major source of inhibitory agents for root suckering, although axillary buds and developing new leaves also exerted a significant inhibitory effect. Removal of mature leaves had only a minor effect on root suckering. Removal of a continuous band of bark (girdling) at the base of the stem consistently stimulated growth of adventitious shoots from the stem below the girdle and occasionally promoted root suckering. Exogenous application of indole-3-acetic acid to excised stumps inhibited root suckering and basal stem sprouting. Naphthylphthalamic acid (NPA), an auxin polar transport inhibitor, had no effect on root suckering or stem sprouting when it was applied to the bark of the basal stem. However, NPA significantly increased root suckering when it was applied to the exposed surface of xylem after girdling. These results suggest that polar transport of auxin in the xylem parenchyma is an important inhibitor of root suckering. On decapitated stems, vacuum extraction of xylem sap from the root system lowered the frequency of root suckering compared with decapitation alone, indicating that substance(s) originating in the root system also play a significant role in controlling root suckering.  相似文献   

9.
We investigated the cause of gravimorphic growth inhibition in current-year shoots of balsam fir (Abies balsamea (L.) Mill.) seedlings displaced from their normal orientation in the gravitational field. Tilting the main stem of seedlings decreased shoot elongation, cambial growth as measured by tracheid production, and leaf dry weight of the terminal shoot and the lateral shoots on the lower side of the tilted stem. Removing either the terminal shoot or all lateral shoots induced compensatory growth in the remaining shoots, but did not reduce the inhibitory effect of tilting on shoot growth. Bending the apical part of a tilted main stem to restore it to the vertical did not fully reverse the inhibition of terminal shoot growth caused by stem tilting. Stem tilting inhibited cambial activity at the base of decapitated terminal shoots treated apically with indole-3-acetic acid (IAA) and decreased the basipetal transport of a [1-(14)C]-IAA pulse. Stem tilting also induced compression wood formation on the lower side of the tilted stem. Compression wood formation was associated with increases in cambial activity and stem respiration. Stem tilting did not affect either the net photosynthetic rate in 1-year-old leaves or the xylem water potential in current-year lateral shoots. These results support the hypothesis that gravimorphic growth inhibition in a current-year shoot on a tilted stem involves reductions in (1) the shoot's capacity to export IAA, and hence to mobilize photoassimilates, and (2) the supply of photoassimilates available for import by the shoot, as a result of increased cambial sink activity associated with compression wood formation outside that shoot.  相似文献   

10.
Reconstituted dikaryons of Pisolithus sp. (Pers.) Coker & Couch from South Africa influenced growth parameters (shoot length, shoot/root ratio and leaf area), nutrition and physiological indicators (transpiration rate, stomatal conductance and xylem water potential) of maritime pine (Pinus pinaster Ait.) seedlings during drought and recovery from drought. Seedlings colonized with certain dikaryons were more sensitive to water stress and showed less mycorrhiza formation under water stress than seedlings colonized with other dikaryons. Control (uninoculated) seedlings were significantly smaller than those inoculated with dikaryons. Transpiration rate, stomatal conductance and xylem water potential varied among mycorrhizal treatments during the water stress and recovery periods. After rewatering, the controls and seedlings inoculated with dikaryon 34 x 20 had a weaker recovery in transpiration rate, stomatal conductance and xylem water potential than the other treatments and appeared to have experienced damage due to the water stress. Concentrations of various elements differed in the shoots of Pinus pinaster colonized by the various dikaryons. It is suggested that breeding of ectomycorrhizal fungi could constitute a new tool for improving reforestation success in arid and semi-arid zones.  相似文献   

11.
This research examined the first year growth characteristics of cold stored and transplanted nursery-produced aspen (Populus tremuloides) seedlings (container and bareroot (BR)) and compared it to the growth of seedlings that had not been transplanted (established from germinants in the field) and therefore had an unrestricted root system (UR). Prior to planting, nursery-produced seedlings were placed in cold storage (−3°C) and root growth potential (RGP) and total non-structural carbohydrate (TNC) root reserves were tested at 0, 10, 75 and after 150 (container) and 190 days (BR) of storage. Both container and BR stock had much lower root to shoot ratios (RSRs) and root carbohydrate reserves compared to UR seedlings after 170 days. During storage, root reserves in container stock declined faster than in the BR and UR seedlings. RGP in all nursery stock was the highest after 75 days of storage, while longer storage resulted in shoot dieback and reduced root growth. After the first growing season, UR seedlings were one tenth the size of the nursery stock; however, in the second growing season they had no stem dieback and grew twice the height and stem diameter. The higher RSRs and root reserves in the UR seedlings was likely caused by early bud set in its first year of growth. This suggests that inducing bud set earlier in the growing regime might allow seedlings to increase root mass and carbohydrate reserves.  相似文献   

12.
We tested the effect of soil compaction on Norway spruce seedlings in terms of the size and theoretical volume flow rate of the tracheids. The results show that soil pressure limits growth in the diameter of the lumens of tracheids in all parts of seedlings studied. The tracheids of the roots with primary xylem had larger lumens than those of the roots and shoots with secondary xylem in both unloaded and loaded seedlings. This corresponds to the higher cumulative theoretical volume flow rate of the tracheids from roots with primary xylem than those from roots and shoots with secondary xylem. Although the volume flow rate of tracheids, according to the Hagen-Poiseuille law, was directly proportional to the quadratic power of the capillary diameter (tracheid lumen), the cumulative curve of the theoretical hydraulic volume flow rate was higher or relatively comparable in loaded seedlings. An explanation for these findings is that there were higher gradients of water potential values in roots and leaves in loaded seedlings because the lengths of the conductive pathways were 27% shorter than in unloaded seedlings. We hypothesise that trees have adapted to different stresses by shortening their conductive pathways to maintain a transpiration rate similar to that of non-stressed trees. These results concerning the impact of soil compaction on tracheid diameter and volume flow rate improve our understanding of the growth and functioning of different conifer organs and the mechanisms underlying the efficiency of water transport through the root xylem to the shoot.  相似文献   

13.
Abstract

Second year Norway spruce [Picea abies (L.) Karst.] container seedlings, short-day (SD) treated for 3 weeks in July, were exposed together with untreated control seedlings (Co) to three different drought treatments for 5 weeks after planting in early August. The treatments were: (1) regular watering (0 week drought); (2) 2 weeks of drought and 3 weeks of watering; and (3) no watering (5 week drought). No difference was found in the vigour and shoot xylem water potential between the SD-treated and the Co seedlings after the drought treatments. The root growth decreased less for the SD seedlings than for the Co seedlings along with the increase in the length of the drought period.  相似文献   

14.
Research conducted on shoot dieback of lodgepole pine, Pinus contorta, during the early 1980's in west Scotland is summarised. The dieback symptoms and their stages of development are described. Ramichloridium pini de Hoog and Rahman was regularly isolated from bark and xylem tissue of dieased shoots. Artificial inoculations established that this fungus was the cause of the disease.  相似文献   

15.
16.
Sperry JS  Ikeda T 《Tree physiology》1997,17(4):275-280
Roots of hardwoods have been shown to be more vulnerable to xylem cavitation than stems. This study examined whether this pattern is also observed in a conifer species. Vulnerability to cavitation was determined from the pressure required to inject air into the vascular system of hydrated roots and stems, and reduce hydraulic conductance of the xylem. According to the air-seeding hypothesis for the cavitation mechanism, these air pressures predict the negative xylem pressure causing cavitation in dehydrating stems. This was evaluated for stems of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and white fir (Abies concolor (Gord. & Glend.) Lindl.). The air-injection method was applied to roots and stems of different sizes and positions in Douglas-fir trees. Roots, especially smaller roots with a xylem diameter < 5 mm, were more vulnerable to cavitation than stems. Mean cavitation pressure for smaller roots was -2.09 +/- 0.42 versus -3.80 +/- 0.19 MPa for larger roots (> 8 mm diameter). Within the shoot system, smaller stems (< 5 mm diameter) were most vulnerable to cavitation, having a mean cavitation pressure of -4.23 +/- 0.565 versus -5.27 +/- 0.513 MPa for large stems (> 8 mm diameter). There was no correlation between tracheid diameter and mean cavitation pressure within root or stem systems, despite larger tracheid diameters in roots (23.3 +/- 3.9 micro m) than in stems (9.2 +/- 1.6 micro m). Smaller safety margins from cavitation in roots may be beneficial in limiting water use during mild drought, and in protecting the stem from low xylem pressures during extreme drought.  相似文献   

17.
Wikberg J  Ogren E 《Tree physiology》2007,27(9):1339-1346
Growth and water-use parameters of four willow (Salix spp.) clones grown in a moderate drought regime or with ample water supply were determined to characterize their water-use efficiency, drought resistance and capacity for drought acclimation. At the end of the 10-week, outdoor pot experiment, clonal differences were observed in: (1) water-use efficiency of aboveground biomass production (WUE); (2) resistance to xylem cavitation; and (3) stomatal conductance to leaf-specific, whole-plant hydraulic conductance ratio (g(st)/K(P); an indicator of water balance). Across clones and regimes, WUE was positively correlated with the assimilation rate to stomatal conductance ratio (A/g(st)), a measure of instantaneous water-use efficiency. Both of these water-use efficiency indicators were generally higher in drought-treated trees compared with well-watered trees. However, the between-treatment differences in (shoot-based) WUE were smaller than expected, considering the differences in A/g(st) for two of the clones, possibly because plants reallocated dry mass from shoots to roots when subject to drought. Higher root hydraulic conductance to shoot hydraulic conductance ratios (K(R)/K(S)) during drought supports this hypothesis. The same clones were also the most sensitive to xylem cavitation and, accordingly, showed the strongest reduction in g(st)/K(P) in response to drought. Drought acclimation was manifested in decreased g(st), g(st)/K(P), osmotic potential and leaf area to vessel internal cross-sectional area ratio, and increased K(R), K(P) and WUE. Increased resistance to stem xylem cavitation in response to drought was observed in only one clone. It is concluded that WUE and drought resistance traits are inter-linked and that both may be enhanced by selection and breeding.  相似文献   

18.
Hymenoscyphus fraxineus, the causal agent of ash dieback, was inoculated onto intact, unwounded current‐year shoots and leaf scars of 4‐year‐old, potted Fraxinus excelsior seedlings. Pieces of ash wood colonized by the fungus were used as inoculum. Three of 25 (12%) of the inoculated intact shoots and nine of 25 (36%) of the inoculated leaf scars were infected by H. fraxineus and developed typical symptoms of ash dieback, including necrotic lesions on the shoot surface and wood discoloration as well as shoot and leaf wilting distal to the inoculation site. No symptoms occurred on control seedlings, which had been inoculated in the same way but with sterile wood pieces. Visible necrotic lesions on shoots and wood discoloration were statistically significantly longer in proximal than in distal direction from the inoculation site, a pattern which resembles symptoms after natural infection. The ash dieback pathogen was re‐isolated from nine of 12 (75%) of the symptomatic seedlings. These results provide indirect supportive evidence that the fungus infects shoots via leaves and shows that it is able, under experimental conditions using a massive mycelial inoculum, to directly infect intact, unwounded current‐year shoots of its main host in Europe.  相似文献   

19.
One-year-old Norway spruce (Picea abies (L.) Karst.) seedlings were grown hydroponically in a growth chamber to investigate the effects of low and high nutrient availability (LN; 0.25 mM N and HN; 2.50 mM N) on growth, biomass allocation and chemical composition of needles, stem and roots during the second growing season. Climatic conditions in the growth chamber simulated the mean growing season from May to early October in Flakaliden, northern Sweden. In the latter half of the growing season, biomass allocation changed in response to nutrient availability: increased root growth and decreased shoot growth led to higher root/shoot ratios in LN seedlings than in HN seedlings. At high nutrient availability, total biomass, especially stem biomass, increased, as did total nonstructural carbohydrate and nitrogen contents per seedling. Responses of stem chemistry to nutrient addition differed from those of adult trees of the same provenance. In HN seedlings, concentrations of alpha-cellulose, hemicellulose and lignin decreased in the secondary xylem. Our results illustrate the significance of retranslocation of stored nutrients to support new growth early in the season when root growth and nutrient uptake are still low. We conclude that nutrient availability alters allocation patterns, thereby influencing the success of 2-year-old Norway spruce seedlings at forest planting sites.  相似文献   

20.
A better understanding of root/shoot interactions influencing seedling growth on abandoned land could yield insight into seedling regeneration and restoration of the abandoned lands. Field work had been conducted for 2 years (2008–2009) to investigate the impacts of neighbouring plants on Manchurian Ash (Fraxinus mandshurica) seedling growth under the canopy of an old secondary forest and on the abandoned land exposed to full solar radiation in North-eastern China. Four different interaction treatments were designed for the study: neither shoot nor root interaction, shoot interaction only, root interaction only, and both shoot and root interaction. The presence of either the shoots or roots of neighbours had a competitive effect, reducing the growth of the target seedlings at each site. The total competitive effect of roots and shoots of neighbouring plants was significantly less than the sum of root and shoot competition separately on the abandoned land, but this difference was not significant beneath the forest canopy. Root competition was more restraining than shoot competition on the abandoned land. Target seedlings adjusted their root morphology and growth rates in response to the competitive effects from different parts of the neighbouring plants. Our results indicated that the root:shoot ratios of the target seedlings at the end of the experiment were affected by neither initial tree size nor the competition from either above- or belowground at either site. The results also highlight the importance of reducing root competition in boosting seedling regeneration and forest rehabilitation on the abandoned land.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号