首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crop residue retention has been considered a practicable strategy to improve soil organic carbon(SOC) and total nitrogen(TN), but the effectiveness of residue retention might be different under varied tillage practices. To evaluate the effects of residue management on the distribution and stocks of SOC and TN under different tillage practices, a bifactorial experiment with three levels for tillage practices(no-tillage, rotary tillage, and conventional tillage) and two levels for residue managements(residue retention and residue removal) was conducted in the North China Plain(NCP). Results showed that after a short experimental duration(3–4 years), concentrations of SOC and TN in the 0–10 cm layer were higher under no-tillage than under conventional tillage, no matter whether crop residues were retained or not. Residue retention increased SOC and TN concentrations in the upper layers of soil to some degree for all tillage practices, as compared with residue removal, with the greatest increment of SOC concentration occurred in the 0–10 cm layer under rotary tillage, but in the 10–30 cm layer under conventional tillage. The stocks of SOC in the 0–50 cm depth increased from 49.89 Mg ha–1 with residue removal to 53.03 Mg ha–1 with residue retention. However, no-tillage did not increase SOC stock to a depth of 50 cm relative to conventional tillage, and increased only by 5.35% as compared with rotary tillage. Thus, residue retention may contribute more towards SOC sequestration than no-tillage. Furthermore, the combination between residue retention and no-tillage has the greatest advantage in enhancing SOC and TN in the NCP region.  相似文献   

2.
Soil with low phosphorus(P) availability and organic matter contents exists in large area of southwest of China, but some soybean genotypes still show well adaptations to this low yield farmland. However, to date, the underlying mechanisms of how soybean regulates soil P availability still remains unclear, like microbe-induced changes. The objective of the present study was to compare the differences of rhizosphere bacterial community composition between E311 and E109 in P-sufficiency(10.2 mg kg~(–1)) and P-insufficiency(5.5 mg kg~(–1)), respectively, which then feedback to soil P availability. In P-sufficiency, significant differences of the bacterial community composition were observed, with fast-growth bacterial phylum Proteobacteria, genus Dechloromonas, Pseudomonas, Massilia, and Propionibacterium that showed greater relative abundances in E311 compared to E109, while in P-insufficiency were not. A similar result was obtained that E311 and E109 were clustered together in P-insufficiency rather than in P-sufficiency by using principal component analysis and hierarchical clustering analysis. The quadratic relationships between bacterial diversity and soil P availability in rhizosphere were analyzed, confirming that bacterial diversity enhanced the soil P availability. Moreover, the high abundance of Pseudomonas and Massilia in the rhizosphere of E311 might increased the P availability. In the present study, the soybean E311 showed capability of shaping rhizosphere bacterial diversity, and subsequently, increasing soil P availability. This study provided a strategy for rhizosphere management through soybean genotype selection and breeding to increase P use efficiency, or upgrade middle or low yield farmland.  相似文献   

3.
Understanding the influence of farming practices on carbon(C) cycling is important for maintaining soil quality and mitigating climate change, especially in arid regions where soil infertility, water deficiency, and climate change had significantly influenced on agroecosystem. A field experiment was set up in 2009 to examine the influence of residue management and fertilizer application on the C cycle in a cotton field in the Xinjiang Uygur Autonomous Region of Northwest China. The study included two residue management practices(residue incorporation(S) and residue removal(NS)) and four fertilizer treatments(no fertilizer(CK), organic manure(OM), chemical fertilizer(NPK), chemical fertilizer plus organic manure(NPK+OM)). Soil organic carbon(SOC) and some of its labile fractions, soil CO_2 flux, and canopy apparent photosynthesis were measured during the cotton growing seasons in 2015 and 2016. The results showed that SOC, labile SOC fractions, canopy apparent photosynthesis, and soil CO_2 emission were significantly greater in S+NPK+OM(residue incorporation+chemical fertilizer) than in the other treatments. Analysis of all data showed that canopy apparent photosynthesis and soil CO_2 emission increased as SOC increased. The S+OM(residue incorporation+organic manure) and S+NPK+OM treatments were greater for soil C sequestration, whereas the other treatments resulted in soil C loss. The S+NPK treatment is currently the standard management practice in Xinjiang. The results of this study indicate that S+NPK cannot offset soil C losses due to organic matter decomposition and autotrophic respiration. Residue return combined with NPK fertilizer and organic manure application is the preferred strategy in arid regions for increasing soil C sequestration.  相似文献   

4.
The contents of soil organic C (SOC), total N (TN), total P (TP), dissolved N (DN), Olsen-P, and microbial biomass C, N, P (BC, BN, BP) of 254 paddy soils (0–18 cm in depth) in a hilly red soil region of subtropical zone of China were studied. The results showed that the contents of SOC, TN, BC, BN and DN of paddy soils at the bottom of hills were 14.6%, 13.6%, 24.6%, 20.4% and 95.8% higher than those at the foothill, respectively. The Olsen-P content of paddy soils at the foothill was 33.3% higher than that at the bottom of hills. However, the differences in TP, BP and available P (the sum of BP and Olsen-P) contents were not significant between the two positions. In addition, the ratios of soil C/P, BC/BP and BC/SOC of paddy soils at the bottom of hills were 12.7%, 28.5% and 8.2% higher than those at the foothill, respectively, but the differences in ratios of soil C/N, BC/BN, BN/TN and BP/TP were not statistically significant between various positions. __________ Translated from Plant Nutrition and Fertilizer Science, 2007, 13(1): 15–21 [译自: 植物营养与肥料学报]  相似文献   

5.
Apple stem pitting virus (ASPV) is an important causal agent of pear diseases. Nowadays, the infection status and molecular characteristics of the virus in old pear trees have never been investigated. In this study, we provide the first complete genome sequence of an ASPV isolate LYC from an over 300-year-old tree of a local Pyrus bretschneideri cultivar ‘Chili’ specifically grown at Laiyang area in China. ASPV-LYC possesses a chimeric genome consisting of 9 273 nucleotides excluding a poly(A) tail at its 3’ end and harboring a recombination region in its open reading frame (ORF1) with Aurora-1 and KL9 identified as the major and minor parents. Western blot analysis with antisera against recombinant coat proteins (CPs) of three ASPV isolates from pear indicates that ASPV-LYC is serologically related to these ASPV isolates, but with differential activities. Further biological tests on indicator plants of Pyronia veitchii show that ASPV-LYC can induce serious leaf and stem symptoms as other ASPV isolates. The results provide an important information for understanding molecular evolution of ASPV and suggest a need to prevent dissemination of the isolate among pear trees.  相似文献   

6.
Indigenous pigs in South China are valuable genetic resources with many specific and unique characters, which have played an important role in the establishment of some western modern pig breeds. However, the origin and genetic diversity of indigenous pigs in South China have not been fully understood. In the present study, we sequenced 534 novel mitochondrial DNA(mt DNA) D-loop and assembled 54 complete mitogenome sequences for all 17 indigenous pig breeds from Fujian, Guangdong, Guangxi and Hainan in South China. These data were analyzed together with previously published homologous sequences relevant to this study. We found that all 13 coding genes of the mitogenomes were under purifying selection, but ND1 had the most variable sites and CYTB contained the most non-synonymous SNPs. Phylogenetic analysis showed that all indigenous pigs in South China were clustered into the D haplogroup with D1 a1, D1 b, D1 c and D1 e sub-haplogroups found to be dominant. Haplotype and nucleotide diversities of D-loop sequences ranged from 0.427 to 0.899 and from 0.00342 to 0.00695, respectively, among which all pigs in Guangdong had the lowest diversity. The estimates of pairwise FST, gene flow(Nm) and genetic distance(Da) indicated that most of these indigenous pig breeds differentiated from each other significantly(P0.05). Among the western modern breeds, Berkshire and Yorkshire had significant Asian matrilineal footprints from indigenous pigs in South China, especially the Spotted pigs distributed in Guangdong and Guangxi. The neutrality test(Fu's F_S) indicated that indigenous pigs from Fujian and Guangxi had gone through recent population expansion events(P0.05). It is concluded that indigenous pigs in South China were most likely derived from the Mekong region and the middle and downstream regions of Yangtze River through Guangxi and Fujian. Our findings provide a complete and in-depth insight on the origin and distribution pattern of maternal genetic diversity of indigenous pigs in South China.  相似文献   

7.
The formation and turnover of macroaggregates are critical processes influencing the dynamics and stabilization of soil organic carbon (SOC). Soil aggregate size distribution is directly related to the makeup and activity of microbial communities. We incubated soils managed for >30 years as restored grassland (GL), farmland (FL) and bare fallow (BF) for 60 days using both intact and reduced aggregate size distributions (intact aggregate distribution (IAD)<6 mm; reduced aggregate distribution (RAD)<1 mm), in treatments with added glucose, alanine or inorganic N, to reveal activity and microbial community structure as a function of aggregate size and makeup. Over a 60-day incubation period, the highest phospholipid fatty acid (PLFA) abundance was on day 7 for bacteria and fungi, on day 15 for actinomycete. The majority of the variation in enzymatic activities was likely related to PLFA abundance. GL had higher microbial abundance and enzyme activity. Mechanically reducing macroaggregates (>0.25 mm) by 34.7% in GL soil with no substrate additions increased the abundance of PLFAs (average increase of 15.7%) and activities of β-glucosidase (increase of 17.4%) and N-acetyl-β-glucosaminidase (increase of 7.6%). The addition of C substrates increased PLFA abundance in FL and BF by averages of 18.8 and 33.4%, respectively, but not in GL soil. The results show that the effect of habitat destruction on microorganisms depends on the soil aggregates, due to a release of bioavailable C, and the addition of substrates for soils with limited nutrient availability. The protection of SOC is promoted by larger size soil aggregate structures that are important to different aggregate size classes in affecting soil C stabilization and microbial community structure and activity.  相似文献   

8.
Eleven grape cultivars were analysed to explore the variety differences of fresh grape phenolic profiles. The results showed that free phenolics were predominant in grape skins and pulps, and showed the higher antioxidant activities than bound. In 11 cultivars, Muscat Kyoho extracts had the highest total phenolic content in skins(10.525 mg GAE g~(–1) FW) and pulps(1.134 mg GAE g~(–1) FW), and exhibited the highest DPPH radical scavening capacity(EC_(50)=11.7 μg mL~(–1)) and oxygen radical absorbance capacity(ORAC) value(190.57 μmol TE g~(–1) FW) of free phenolic in skin. In addition, the most abundant phenolics in grape skins were found to be flavonoids such as kaempferol in Kyoho skin(541.2 μg g~(–1) FW), rutin, catechin and epicatechin in Muscat Kyoho skin(262.3, 86.3 and 70.0 μg g~(–1) FW, respectively). Furthermore, the principal component analysis showed a strong difference of phenolic profiles with the cultivars, existing forms and distributions. Pearson correlation coefficient analysis showed a significant linear correlation between total phenolic content and antioxidant activity(P0.05). Therefore, both skins and pulps were rich sources of bioactive phenolic compounds, and Muscat Kyoho was the ideal source among all samples.  相似文献   

9.
The double-rice cropping system is a very important intensive cropping system for food security in China. There have been few studies of the sustainability of yield and accumulation of soil organic carbon(SOC) in the double-rice cropping system following a partial substitution of chemical fertilizer by Chinese milk vetch(Mv). We conducted a 10-year(2008–2017) field experiment in Nan County, South-Central China, to examine the double-rice productivity and SOC accumulation in a paddy soil in response to different fertilization levels and Mv application(22.5 Mg ha~(–1)). Fertilizer and Mv were applied both individually and in combination(sole chemical fertilizers, Mv plus 100, 80, 60, 40, and 0% of the recommended dose of chemical fertilizers, labeled as F100, MF100, MF80, MF60, MF40, and MF0, respectively). It was found that the grain yields of double-rice crop in treatments receiving Mv were reduced when the dose of chemical fertilizer was reduced, while the change in SOC stock displayed a double peak curve. The MF100 produced the highest double-rice yield and SOC stock, with the value higher by 13.5 and 26.8% than that in the F100. However, the grain yields increased in the MF80(by 8.4% compared to the F100), while the SOC stock only increased by 8.4%. Analogous to the change of grain yield, the sustainable yield index(SYI) of double rice were improved significantly in the MF100 and MF80 compared to the F100, while there was a slight increase in the MF60 and MF40. After a certain amount of Mv input(22.5 Mg ha~(–1)), the carbon sequestration rate was affected by the nutrient input due to the stimulation of microbial biomass. Compared with the MF0, the MF100 and MF40 resulted in a dramatically higher carbon sequestration rate(with the value higher by 71.6 and 70.1%),whereas the MF80 induced a lower carbon sequestration rate with the value lower by 70.1% compared to the MF0. Based on the above results we suggested that Mv could partially replace chemical fertilizers(e.g., 40–60%) to improve or maintain the productivity and sustainability of the double-rice cropping system in South-Central China.  相似文献   

10.
The contribution percentage of inherent soil productivity (CPISP) refers to the ratio of crop yields under no-fertilization versus under conventional fertilization with the same field management. CPISP is a comprehensive measure of soil fertility. This study used 1 086 on-farm trials (from 1984–2013) and 27 long-term field experiments (from 1979–2013) to quantify changes in CPISP. Here, we present CPISP3 values, which reflect the CPISP states during the first three years after site establishment, for a series of sites at different locations in China collected in 1984–1990 (the 1980s), 1996–2000 (the 1990s), and 2004–2013 (the 2000s). The results showed that the average CPISP3 value for three crops (wheat, rice, and maize) was 53.8%. Historically, the CPISP3 in the 1990s (57.5%) was much higher than those in the 1980s (50.3%), and the 2000s (52.0%) (P≤0.05). Long-term no-fertilization caused CPISP levels to gradually decline and then stabilize; for example, in a mono-cropping system with irrigation, the CPISP values in Northwest and Northeast China declined by 4.5 and 4.0%, respectively, each year for the first ten years, but subsequently, the CPISP values stabilized. In contrast, the CPISP for upland crops in double-cropping systems continued to decrease at a rate of 1.1% per year. The CPISP for upland-paddy cropping decreased very slowly (0.07% per year), whereas the CPISP for paddy cropping decreased sharply (3.1% per year, on average) for the first two years and then remained steady during the following years. Therefore, upland crops in double-cropping systems consume the most inherent soil productivity, whereas paddy fields are favourable for maintaining a high level of CPISP. Overall, our results demonstrate a need to further improve China's CPISP3 values to meet growing productivity demands.  相似文献   

11.
Soybean chlorotic mottle virus (SbCMV) was first detected from soybean plants in Jiangxi Province of China by high throughput sequencing and was confirmed by PCR. The complete nucleotide sequence of NC113 was determined to be 8 210 nucleotides, and shared the highest similarity (91.7%) with sequences of SbCMV that was only reported in Japan. It encodes nine putative open reading frames (ORFs Ia, Ib and II–VIII), and contains a large intergenic region located at nucleotide 5 976–6 512 between ORFs VI and VII. Sequence analysis and phylogenetic tree indicated that NC113 is an isolate of SbCMV, and is more related to the soymoviruses Blueberry red ringspot virus (BRRSV), Peanut chlorotic streak virus (PCSV) and Cestrum yellow leaf curling virus (CmYLCV) than to other representative members in the Caulimoviridae family. Field survey of 472 legume plants from Jiangxi and Zhejiang provinces showed SbCMV was only detected from soybean in Nanchang City with a low incidence rate. This is the first report of Soybean chlorotic mottle virus identified in China.  相似文献   

12.
Apple occupies a dominant position in fruit production globally, and has become the main income source of local smallholder farmers in Luochuan County in the Loess Plateau area, one of the largest apple production areas in China. However, the annual productivity of apple orchards in this region remains low and has gradually declined over the years. The distinction and correlation of production constraints can contribute to the promotion of apple orchard productivity and the development of a sustainable orchard system. In the present study, survey data from 71 smallholder farmers were analyzed using a yield gap model to distinguish the production constraints and determine their correlation with the yield gap based on the structural equation model(SEM). The results indicated that the average apple yield in Luochuan County was 29.9 t ha~(–1) yr~(–1), while the attainable yield(Y_(att); the highest yield obtained from the on-farm surveys) was 58.1 t ha~(–1) yr~(–1). The average explained and unexplainable yield gaps were 26.3 and 1.87 t ha~(–1) yr~(–1). According to the boundary line analysis, crop load,number of sprayings and base fertilizer N were the top three constraints on apple production in 9.8, 7.8 and 7.8% of the plots, respectively. Among the production constraints, crop load and fruit weight affected apple yield through direct pathways,whereas other constraints influenced apple yield through an indirect pathway based on the SEM, explaining 51% of the yield variance by all the main production constraints. These results can improve the current understanding of production constraints and contribute to the development of management strategies and policies for improving apple yield.  相似文献   

13.
Five crop straws(wheat, rice, maize, oil-rape, and cotton) were first steam-exploded for 2 min at 210°C, 2.5 MPa and then pyrolyzed at 500°C for 2 h. Steam explosion(SE) induced 47–95% and 5–16% reduction of hemicellulose and cellulose, respectively, in the crop straws. The biochars derived from SE-treated feedstocks had a lower specific surface area(SSA) and pore volume, compared to those from pristine feedstocks, with one exception that SE enhanced SSA of oil-rape straw biochar by approximately 16 times. After SE, biochars had significant higher anion exchange capacity(AEC)(6.88–11.44 cmol kg~(–1)) and point of zero net charges(PZNC)(pH 3.61–5.32) values. It can thus be speculated that these biochars may have higher potential for anions adsorption. In addition, oil-rape straw might be suitable to SE pretreatment for preparing biochar as a soil amendment and sorbent as well. Further work is required for testing its application in soil.  相似文献   

14.
Cyantraniliprole is a novel anthranilic diamide insecticide with significant efficacy against Bemisia tabaci, an important pest insect worldwide. In this study, we conducted reversion and selection work and genetic analysis, and determined cross-resistance spectrum and synergism of cyantraniliprole resistance based on the reported population, SX population, of B. tabaci collected from Shanxi Province, China. Compared with a susceptible strain (MED-S), SX population, the field-evolved cyantraniliprole-resistant population exhibited 26.4-fold higher resistance to cyantraniliprole. In SX, a sharp decline of cyantraniliprole resistance was shown in the absence of selection. Another tested strain, SX-R, was established from SX population after successive selection with cyantraniliprole and recently developed 138.4-fold high resistance to cyantraniliprole. SX-R had no cross-resistance to abamectin, imidacloprid, thiamethoxam, sulfoxaflor, or bifenthrin. Genetic analysis illustrated that cyantraniliprole resistance in SX-R was autosomally inherited and incompletely dominant. Additionally, piperonyl butoxide (PBO) significantly inhibited cyantraniliprole resistance in the SX-R strain. In conclusion, the selection of SX with cyantraniliprole led to high resistance to cyantraniliprole which is incompletely dominant and no cross-resistance to several common types of insecticides. Enhanced oxidative metabolism is possibly involved in the resistance of SX-R, yet target-site resistance could not be excluded.  相似文献   

15.
Candidatus Liberibacter asiaticus (CaLas), an uncultured Gram-negative alphaproteobacterium, is the causal agent of Huanglongbing (HLB) in citrus. CaLas resides in phloem sieve tubes and has been shown to be unequally distributed in different tissues. Although HLB is a disease of citrus plants, it has been demonstrated that periwinkle can serve as an experimental host of CaLas, which can be transmitted from citrus to periwinkle via the parasitic plant dodder (Cuscuta spp.). To investigate the distribution of CaLas in various periwinkle tissues, the bacteria were transmitted from an infected periwinkle plant to healthy periwinkles by top-grafting. The movement of the inoculum and associated titer changes were observed over time in various tissues. CaLas could be detected in the leaves, main stems, and roots of infected periwinkle by conventional PCR, and in all three tissues a clear time-dependent change in CaLas titer was observed, with titer increasing soon after inoculation and then decreasing as disease symptoms became severe. The highest titer was found at 25, 35 and 35 days after inoculation in leaves, main stems and roots, respectively. The titer in leaves was much higher than in the main stems and roots at the same time point, and the spatial distribution of CaLas in the leaves, main stems and roots of infected periwinkle was uneven, similar to what has been shown in citrus. The results provide guidance for selecting the proper periwinkle tissues and sampling times for early detection of CaLas.  相似文献   

16.
Plant height is one of the most important agronomic traits associated with yield in maize.In this study,a gibberellins(GA)-insensitive dwarf mutant,m34,was screened from inbred line Ye478 by treatment with the chemical mutagen ethylmethanesulfonate(EMS).Compared to Ye478,m34 showed a dwarf phenotype with shorter internodes,and smaller leaf length and width,but with similar leaf number.Furthermore,m34 exhibited smaller guard cells in internodes than Ye478,suggesting that smaller cells might contribute to its dwarf phenotype.Genetic analysis indicated that the m34 dwarf phenotype was controlled by a recessive nuclear gene.An F2 population derived from a cross between m34 and B73 was used for mutational gene cloning and this gene was mapped to a chromosome region between umc2189 and umc1553 in chromosome 1 bin1.10,which harbored a previously identified dwarf gene Zm VP8.Sequencing analysis showed a nucleotide substitution(G1606 to A1606)in the sixth exon of ZmVP8,which resulted in an amino acid change(E531 to K531)from Ye478 to m34.This amino acid change resulted in anα-helix changing to aβ-sheet in the secondary protein structure and the‘SPEC’domain changed to a‘BOT1NT’domain in the tertiary protein structure.Taken together,these results suggested that m34 is a novel allelic mutant originally derived from Ye478 that is useful for further ZmVP8 functional analysis in maize.  相似文献   

17.
The two mutants idr1-1 and 297-28, which were obtained from the radiation mutation of HD297 and IAPAR9, were used as experimental materials in this study for a 2-year(2012 and 2013) experiment about field drought resistance identification in Beijing, China. Key agronomic traits and water-related physiological indexes were observed and measured, including the leaf anti-dead level(LADL), days to heading, plant height, setting percentage, aboveground biomass, leaf water potential(LWP), net photosynthetic rate(Pn) and transpiration rate. The results showed that the mutant idr1-1 that was under drought stress(DS) conditions for 2 years had the highest LADL grades(1.3 and 2.0) among all the materials, and they were 2–3 grades stronger than the wild-type IAPAR9 with an average that was 21.4% higher for the setting percentage than the wild type. Compared with the IAPAR9 for the 2-year average delay in the days to heading and the reduction rates in the plant height, setting percentage, and aboveground biomass under DS compared with the well-watered(WW) treatment, idr1-1 showed 3.2% less delay and 19.1, 16.4, and 6.1% less reduction, respectively. The idr1-1 in the LWP always exhibited the highest performance among all the materials. The Pn of idr1-1 under severe and mild DS comparing with that under WW was slightly decreased and even slightly increased, respectively, leading to an average reduction rate of only 0.92%, which was 26.93% less than that of IAPAR9. Under the severe DS, idr1-1 still showed the highest value of 16.88 μmol CO2 m–2 s–1 among all the materials and was significantly higher than that of IAPAR9(11.66 μmol CO2 m–2 s–1). Furthermore, only idr1-1 had the increased and the highest transpiration rate values(7.6 and 6.04 mmol H2 O m–2 s–1) under both mild and severe DS compared with the values under WW, when the transpiration rate of all the other materials significantly decreased. By contrast, the 297-28 in terms of the LADL grade under DS was the lowest(7.0), and it was four grades weaker than its wildtype HD297 and even one grade weaker than the drought-sensitive paddy rice SN265. For the 2-year average reduction rates in aboveground biomass and plant heights under DS compared with those under the WW, 297-28 was 31.6 and 31.8% higher than HD297, respectively. Meanwhile, 297-28 showed the worst performance for the LWP, Pn, and transpiration rate. These results suggest that idr1-1 might be a superior drought tolerant mutant of upland rice found in China. It has a strong ability to maintain and even enhance leaf transpiration while maintaining a high plant water potential under DS, thus supporting a high Pn and alleviating the delay in agronomic trait development and yield loss effectively. 297-28 is a much more highly drought-sensitive mutant that is even more sensitive than paddy rice varieties. The two mutants could be used as drought tolerance controls for rice germplasm identification and the drought resistant mechanism studies in the future. idr1-1 is also suitable for breeding drought-tolerant and lodging-resistant high-yield rice varieties.  相似文献   

18.
测定了具有代表性的 3种水育型 4种母质发育的红壤性水稻土及起源土壤的稀土体系 [稀土元素总丰度 (∑ REE)、轻稀土丰度 (∑ LREE)、重稀土丰度 (∑HREE) ]、土壤颗粒组成、有机质体系、铁氧化物体系主要组分和土壤 p H值 ,并分析了 REE体系与这些土壤特性物质的相关性 .结果表明 :(1 )土壤 ∑REE和 ∑LREE均与土壤砂粒含量呈显著负相关 ,与粘粒含量呈显著正相关 ;∑LREE对 ∑REE消长变异的影响大于∑ HREE.(2 )土壤∑ REE和 ∑LREE均与土壤腐殖质及富里酸含量呈显著正相关 ,与胡敏酸含量相关性不显著 .(3 )土壤∑ REE与土壤全铁 (Fet)呈极显著正相关 ,∑REE及 ∑LREE均与晶质铁 (Fec)相关性强 .(4 )土壤酸度对∑ REE、∑ LREE、∑ HREE的影响不显著  相似文献   

19.
Stem lignin content(SLC) in common wheat(Triticum aestivum L.) contributes to lodging resistance. Caffeic acid 3-O-methyltransferase(COMT) is a key enzyme involved in lignin biosynthesis. Characterization of TaCOMT genes and development of gene-specific markers could enable marker-assisted selection in wheat breeding. In the present study, the full-length genomic DNA(gDNA) sequences of TaCOMT genes located on chromosomes 3 A, 3 B, and 3 D were cloned by homologous cloning. Two allelic variants, TaCOMT-3 Ba and TaCOMT-3 Bb, were identified and differed by a 222-bp insertion/deletion(InDel) in the 3′-untranslated region(3′-UTR). A co-dominant gene-specific marker based on this InDel was developed and designated as Ta COMT-3 BM. A total of 157 wheat cultivars and advanced lines grown in four environments were used to validate the associations between allelic patterns and SLC. The SLC of cultivars with TaCOMT-3 Ba was significantly(P0.01) higher than that of those with TaCOMT-3 Bb, and the marker TaCOMT-3 BM could be effectively used in wheat breeding.  相似文献   

20.
采用密闭室法测定长期不同施肥制度下双季稻田氨挥发速率及其影响因素,并分析双季稻田氨挥发与产量的关系。结果表明:节肥型有机无机结合农业施肥处理(JF处理)的水稻产量与全肥型有机无机结合农业施肥处理(OM处理)和单施无机肥(NPK处理)的差异不显著,显著高于单施化学氮钾肥(NK处理)的产量;双季稻氮素农学利用率(NUEA)以JF处理的最高,早稻和晚稻分别为17.4和8.9 kg.kg-1,显著高于NK处理;双季稻氨挥发累积量以OM处理最高(86.2 kg.hm-2),NK处理次之(78.2 kg.hm-2),显著高于JF处理(60.7 kg.hm-2);氨挥发速率主要受田面水NH4+-N质量浓度的影响。由于气温和降雨的影响,施早稻分蘖肥后氨挥发速率显著高于施基肥后的,而施晚稻基肥和分蘖肥后的没有差异。因此,JF处理在稳定产量的基础上,能够减少氨挥发量,并且提高了土壤中有机质和全氮含量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号