首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
【目的】叶片氮素状况是小麦生产中精确施氮管理与调控的前提,实时无损监测叶片氮素状况对小麦生产管理具有重要意义。本文旨在综合分析不同环境下小麦冠层光谱响应差异,进而构建其估测模型,为小麦氮肥合理运筹提供技术支持。【方法】本研究基于3种不同土壤质地(砂土、壤土和黏土)、5种不同施氮水平(0、120、225、330和435 kg•hm-2)及3种河南省主栽小麦品种(矮抗58、周麦22和郑麦366)连续2年的大田试验,于小麦主要生育时期同步测定冠层光谱反射率和叶片氮含量,对3种不同土壤质地条件下小麦冠层叶片氮含量的高光谱响应差异进行比较,系统分析350—1 050 nm 波段范围内任意两波段组合而成的差值(DSI)、比值(RSI)及归一化差值(NDSI)光谱指数与叶片氮含量的量化关系,并建立估算模型。【结果】冠层光谱反射率在不同施氮水平和不同生育时期下存在明显差异,但趋势基本一致;比较3种土壤质地小麦冠层光谱反射率大小表现为:黏土>壤土>砂土,可以反映小麦实时田间长势。通过系统分析3种土壤质地小麦冠层反射光谱与对应叶片氮含量间的定量关系,表明在可见光和近红外区域均有较好的相关性,但敏感波段区域有所不同。对3种质地获取的样本进行系统分析表明,砂土、壤土和黏土质地小麦叶片氮含量分别以光谱指数NDSI(FD710,FD690)、DSI(R515,R460)和RSI(R535,R715)建模结果表现最好,决定系数分别达到0.88、0.87和0.87。经不同年份独立资料检验结果显示,基于上述光谱指数估测小麦叶片氮含量的预测决定系数分别为0.87、0.85和0.77,预测均方根误差分别为0.31、0.32和0.26。【结论】利用光谱参数NDSI(FD710,FD690)、DSI(R515,R460)和RSI(R535,R715)为自变量建立的估测模型分别可以较好地预测砂土、壤土和黏土3种质地小麦叶片氮含量。  相似文献   

2.
基于高光谱的水稻叶片含水量监测研究   总被引:9,自引:2,他引:7  
【目的】建立快速、无损诊断水稻叶片含水量的估测模型,为水稻水分精确管理提供依据。【方法】基于2年不同土壤水分处理和水稻品种的池栽试验,于水稻主要生育时期同步测定顶部4张叶片的光谱反射率和含水量,系统分析350—2 500 nm波段范围内任意两波段组合而成的比值(RSI)、归一化差值(NDSI)及差值(DSI)光谱指数,并分析其与叶片含水量的量化关系。【结果】不同土壤水分处理和叶位间,叶片反射光谱具有显著的时空变化特征,叶片含水量的敏感光谱波段主要位于近红外及短波红外区域;RSI (R1402, R2272)及NDSI (R1402, R2272)光谱指数与叶片含水量呈现良好的线性相关,线性拟合R2均达到0.80。基于独立试验资料对所建模型进行测试检验也显示,预测值和观察值的拟合R2也均达到0.86。【结论】RSI(R1402, R2272)、NDSI(R1402, R2272)均可用于水稻叶片含水量的定量监测。  相似文献   

3.
【目的】利用敏感波段构建适宜的植被指数,对于提高光谱技术诊断作物营养状况的精确度具有十分重要的意义。【方法】采用单因素随机区组设计的方法,通过设置5种不同施氮处理,研究夏玉米在吐丝期穗位叶光谱反射率与氮素含量的关系,进而比较了前人的植被指数与构建的8种不同形式宽窄波段组合植被指数的优越性,并对构建的氮素含量估测模型进行精度验证。【结果】穗位叶原始光谱反射率在近红外波段(700~1000 nm)随施氮量增加而升高,与氮素含量的变化表现一致;一阶导数光谱的红边位置随施氮量增加依次为698、703、709、714和714 nm,出现"红移"现象;利用氮素敏感波段构建宽窄波段组合的植被指数与叶片氮含量进行相关性分析,优于前人所采用的植被指数;植被指数[R(800-900)-R(692-729)]/R711和植被指数[R(800-900)+R(650-670)]/R711构建的乘幂函数估测模型检验精度较高,R~2和RMSE分别为0.92和0.09。【结论】利用氮素敏感波段构建的宽窄波段组合植被指数,提高了光谱参量与氮素含量的相关性,可以实现对夏玉米吐丝期氮素营养的诊断。  相似文献   

4.
【目的】研究苹果损伤高光谱特征,建立基于高光谱成像的苹果损伤区域最佳分类模型,为实时、快速、准确地识别苹果损伤提供重要依据。【方法】以北京平谷区收集的苹果样品为研究对象,利用高光谱图像技术检测水果表面机械损伤。利用 390 ~1 000 nm 范围的高光谱图像(HSI)数据,通过比值光谱分析损伤与正常感兴趣区域(ROI)的光谱响应特性,筛选特征波段,并构建较好地突出损伤区域特征的 3 种类型光谱指数:归一化光谱指数(NDSI)、比值光谱指数(RSI)和差值光谱指数(DSI)。在此基础上,优选提取损伤区域能力较强的光谱指数,利用迭代自组织数据分析(ISODATA)无监督据聚类算法提取苹果损伤区域。【结果】当苹果表面受到损伤时,光谱反射率变化显著。波段优化后发现,528、676 nm 的反射率可以有效识别异常区域。基于选定的特征波段,构建苹果损伤检测的识别光谱指数,包括 NDSI、RSI 和 DSI。光谱指数图像的像素值分析发现,损伤区域特征与正常区域特征在各光谱指数(SI)增强图像中区分明显。两类图像特征的 NDSI 像素平均值相差最大、达到 0.629,表明建立的 NDSI 对损伤区域及正常区域特征具有较强的区分能力。利用无监督分类方法 ISODATA 分类,验证了光谱特征指数在检测苹果损伤方面具有较高的特异性,对苹果损伤的检测正确率 达到 92.50%。【结论】研究结果适用于苹果损伤的实时快速检测,为苹果的精准管理生产提供技术基础与参考。  相似文献   

5.
【目的】土壤是植物生长所需的必要因子,岩溶区高浓度的土壤Ca含量则影响着当地植物的生长发育。研究基于高光谱反演技术为岩溶区土壤Ca含量的快速测量提供参考。【方法】利用广西典型喀斯特区土壤为研究对象,开展土壤反射率光谱与室内理化分析同步测量。在土壤原始光谱反射率的基础上,进一步对土壤光谱进行一阶导数和包络线去除处理,并利用光谱指数法和主成分回归分析法进行土壤Ca的反演研究。【结果】岩溶区土壤钙含量与土壤光谱之间具有非常高的相关性,在600 nm和2 300 nm附近出现较高的峰值,且经过一阶导数和包络线去除处理后的土壤光谱反演效果要明显优于原始光谱。其中,一阶导数处理的指数模型RSI(607 nm,2 370 nm)的R2达到0.67,均方根误差为26.34,反演效果最好;包络线去除处理的NDSI(599 nm,601 nm)的R2为0.57,均方根误差为18.24;原始光谱的NDSI(603 nm,604 nm)的R2为0.57,均方根误差为27.94。主成分回归分析的R2为0.57,均方根误差11.92,也具备较好的反演能力。【结论】指数反演中RSI指数具有波段指示意义明确,反演精度高等优点,而主成分回归分析的精度高,分析快,但无法筛选敏感波段。该研究结果证明了高光谱手段反演岩溶区土壤Ca含量的可行性,并为快速获取岩溶区土壤Ca含量的相关研究提供了指导意义。  相似文献   

6.
关中地区小麦冠层光谱与氮素的定量关系   总被引:4,自引:0,他引:4  
【目的】分析不同生育期及整个生育期小麦叶片氮含量(LNC)与冠层光谱反射特征的关系,以实现对田间小麦活体氮素营养状况的监测,为小麦叶片氮素状况的精确诊断提供依据。【方法】以位于陕西关中地区杨凌揉谷镇、扶风马席村和巨良农场的3个小麦试验田为研究对象,测定不同长势及生育期小麦LNC及冠层光谱反射率,分析不同长势下小麦LNC和反射率的变化,并研究氮含量与冠层光谱反射率的相关性,以及小麦LNC与比值植被指数(RVI)、归一化植被指数(NDVI)的相关性,建立小麦LNC的敏感波段及光谱监测模型。【结果】在同一生育期,长势差的小麦叶片氮含量较低,长势较好的叶片氮含量高。与单波段相比,组合波段构成的植被指数RVI、NDVI与LNC的相关性明显提高,近红外波段(730~1 075nm)和红波段630,660,690nm组成组合波段的RVI、NDVI与LNC呈极显著正相关,其中LNC与RVI的相关性较高。利用独立的小麦田间试验数据,采用通用的均方根差(RMSE)、决定系数(R2)、准确度(斜率)3个指标对所建立的模型进行检验,最终选取RVI(970,690)为监测小麦LNC的最佳光谱参数,构建的最佳模型为LNC=0.176 3×RVI(970,690)0.775 6,R2为0.863,RMSE为0.137,准确度为0.979,接近于1。【结论】利用小麦冠层光谱反射率构建了预测小麦LNC的最佳模型,该模型具有较好的准确度和普适性,适用于整个生育期小麦叶片氮含量的监测。  相似文献   

7.
小麦氮素积累动态的高光谱监测   总被引:12,自引:1,他引:11  
 【目的】研究小麦地上部氮积累量与冠层高光谱参数的定量关系,分析多种高光谱参数估算地上部氮积累量的效果。【方法】连续3年采用不同蛋白质含量的小麦品种在不同施氮水平下进行大田试验,于小麦不同生育期采集田间冠层高光谱数据并测定植株不同器官生物量和氮含量。【结果】植株氮积累量随着施氮水平的提高而增加,不同地力水平间存在明显差异。植株氮积累量的光谱敏感波段主要存在于近红外平台和可见光区,而地上部氮积累量与冠层光谱的相关性明显降低。对植株氮积累量的光谱估算,在不同品种、氮素水平、生育时期和年度间可以使用统一的光谱模型。在籽粒灌浆期间植株氮积累量自开花期随时间进程的积分累积值与对应时期籽粒氮素积累状况存在显著的定量关系,根据特征光谱参数植株氮素营养籽粒氮积累量这一技术路径,以植株氮积累量为交接点将模型链接,建立高光谱参数与籽粒氮积累量间定量方程。将植株氮积累量与籽粒氮积累量相加,确立了基于高光谱参数的籽粒灌浆期间地上部氮积累量监测模型。经不同年际独立资料的检验表明,利用光谱参数SDr/SDb、VOG2、VOG3、RVI(810,560)、[(R750-800)/(R695-740)]-1和Dr/Db建立模型可以实时监测小麦地上部氮素积累动态变化,预测精度R2分别为0.774、0.791、0.803、0.803、0.802和0.778,相对误差RE分别为16.7%、15.5%、15.6%、18.5%、15.5%和17.3%。【结论】利用关键特征光谱参数可以有效地评价小麦地上部氮素积累状况,其中尤以植被指数VOG2、VOG3和[(R750-800)/(R695-740)]-1的效果更好。  相似文献   

8.
【目的】去除无人机多光谱遥感影像中的阴影,以提高苹果树冠层氮素含量反演模型精度。【方法】以山东省栖霞市苹果园为试验区,利用2019年6月采集的无人机多光谱影像,分别基于归一化阴影指数(normalized shaded vegetation index,NSVI)和归一化冠层阴影指数(normalized difference canopy shadow index,NDCSI)去除果树冠层多光谱影像中的阴影,提取非阴影区域果树冠层光谱信息;通过相关性分析方法,将基于原始光谱影像和基于NSVINDCSI去除阴影后提取的光谱数据与实测叶片氮素含量进行相关性分析,分别筛选氮素含量的敏感波段并构建光谱参量;采用偏最小二乘(partial least square,PLS)及支持向量机(support vector machine,SVM)方法构建果树冠层氮素含量反演模型并进行精度检验。【结果】绿光波段和红光波段为果树冠层氮素含量反演的敏感波段;阴影削弱了果树冠层的光谱信息,去除阴影前后,冠层多光谱各波段光谱差异较大,在红边波段及近红外波段尤为明显;基于2个阴影指数去除阴影后构建的氮素反演模型精度均有提升,最优模型为基于NDCSI去除阴影后构建的支持向量机氮素含量反演模型,该模型建模集R2RPD分别为0.774、1.828;验证集R2RPD分别为0.723、1.819。【结论】基于NDCSI可有效去除无人机多光谱果树冠层影像中的阴影,提高氮素含量反演精度,为果园氮素精准管理提供了有效参考。  相似文献   

9.
【目的】为利用高光谱技术实现作物氮素营养状况无损快速监测提供途径。【方法】通过不同品种小麦不同氮素水平试验,分析小麦不同氮素营养状况下,叶片叶绿素含量与叶面积指数、冠层光谱角的关系,定量分析光谱角指数,并建立相关模型对小麦氮素营养状况进行实时监测。【结果】冠层光谱角指数与差值叶绿素含量和差值叶面积指数的相关性最高为0.919 7,两者之间建立的模型决定系数为0.739 2,0.617 8,具有很好的拟合效果。【结论】利用光谱角可以监测小麦叶片叶绿素及叶面积差异,在此基础上进行小麦氮素营养监测是可行的。  相似文献   

10.
【目的】研究棉花黄萎病叶片氮素含量与高光谱的关系,以期用简便、无损的遥感技术提取病害棉叶氮素含量,为大面积遥感监测棉花病害提供理论依据。【方法】通过小区和大田同步调查棉花黄萎病,在不同生育期测定病叶光谱及其氮素含量。将病叶光谱特征参数与氮素含量进行相关分析,建立病叶氮素含量估测模型并检验。【结果】随着病害严重度的增加,棉叶氮素含量逐渐减小。病叶氮素含量与光谱指数FD731、NDVI[670,890]、DVI[FD554,FD731]、PVI[FD554,FD731]、RDVI[702,758]、RDVI[FD554,FD731]、SAVI、OSAVI、PRI[570,531]、PRI[702,758]、REP、Lo、Depth672和Area672呈极显著正相关,与11550、R680、R702、SD737、DVI[4So,560]、NDVI[702,758]、DVI[702,758]、RVI[702,758]、SIPI、TCARI、CCII、PPR[550,450]、Lwidth和ND672均呈极显著负相关,与Dr未达显著相关。选取相关系数较大的光谱参数建立的病叶氮素含量估测模型均达到显著水平,整体上利用DVI[702,758]、PVI[FD554,FD731]和NDVI[702,758]进行氮素含量的估测精度最高,模型的预测的相对误差均小于2%。【结论】考虑到DVI[702,758]建立的模型更为实用,可作为病害棉叶氮素含量的最佳估测模型。  相似文献   

11.
不同算法红边位置监测小麦冠层氮素营养指标的比较   总被引:6,自引:1,他引:5  
【目的】红边位置常被用于监测作物叶片氮素营养状况。本文旨在通过不同算法提取红边位置,分析并比较不同算法提取的红边位置对氮素营养监测模型的准确性和可靠性差异,确定监测小麦叶片氮素营养的最佳红边位置算法及定量模型。【方法】基于不同施氮水平、播种密度、品种类型和生育时期的小麦田间试验,系统分析不同算法的红边位置(一阶微分、倒高斯法、多项式拟合法、四点内插法、拉格朗日法、线性外推法)与冠层叶片氮素营养指标的定量关系,比较不同算法红边位置对氮素营养监测的准确性和可靠性。【结果】线性外推法为计算小麦红边位置的最佳算法,并建立了基于线性外推法的小麦冠层叶片氮素营养定量监测模型。【结论】研究结果为小麦冠层叶片氮素营养指标的可靠监测提供了有效途径。  相似文献   

12.
基于导数光谱的小麦冠层叶片含水量反演   总被引:3,自引:0,他引:3  
【目的】以高光谱技术实现小麦含水量信息的快速、无损与准确获取,为小麦灌溉的精确管理提供科学依据。【方法】利用水氮胁迫试验条件下小麦主要生长期的导数光谱构建了16种新指数,将其与NDII、WBI以及NDWI等常用指数进行比较分析,筛选小麦叶片含水量反演最佳光谱指数,并利用其建立反演模型进行小麦含水量的遥感填图。【结果】在各指数中,FD730-955对小麦冠层叶片含水量的估测结果最佳,其估测模型(对数形式)校正决定系数(C-R2)与检验决定系数(V-R2)分别达0.749与0.742,优于NDII等常用指数;FD730-955所建模型对32个未知样的预测结果与实测值相似度较高,其回归拟合模型R2达0.763,RMSE仅为0.024,取得了良好预测结果,且对叶片含水量以及LAI值较高与较低的样本均具备良好的预测能力,可有效避免样本取值范围以及冠层郁闭度等因素对含水量估测的影响;反演模型对OMIS影像的填图结果与地面实测值拟合模型R2达0.647,RMSE仅为0.027,具有较高的反演精度。【结论】导数光谱可实现小麦冠层叶片含水量信息的准确估测,其中FD730-955系反演的优选指数。  相似文献   

13.
【目的】基于江汉平原麦后移栽棉花适宜氮素诊断指标建立追肥模型,为棉花氮素精准管理提供依据。【方法】于2019年采用田间小区试验,设置6个施氮量处理(0、90、180、270、360、450 kg N/hm2),分析蕾期、花铃期倒4叶叶绿素含量(SPAD值)、叶柄硝酸盐含量(NIT)及24个高光谱参数与前期施氮量的关系,研究麦后移栽棉适宜氮素营养诊断关键指标,结合氮肥效应函数建立氮素追肥模型。【结果】随施氮量的增加,棉花倒4叶SPAD值、叶柄NIT含量显著增大,棉花冠层光谱绿光波段形成的反射峰变缓,但当氮肥增加到360 kg/hm2时不再显著增加(蕾期NIT除外)。蕾期、花铃期倒4叶SPAD值、叶柄NIT含量、冠层高光谱参数(RSI和mND705)与前期施氮量均呈极显著一元二次方程关系(R2>0.8,RMSE<1),可作为江汉平原麦后移栽棉氮素营养诊断指标,以产量潜力的95%为临界值,蕾期麦后移栽棉SPAD值、叶柄NIT含量、冠层RSI和mND705临界值分别为34.802、2.307、1.526和0.549,花铃期相应为34.841、4.174、1.589和0.619。【结论】4个指标为江汉平原麦后移栽棉氮素营养诊断指标。麦后移栽棉最适宜施氮量为310.64 kg/hm2,产量潜力为4 662.53 kg/hm2。  相似文献   

14.
一种新的估算水稻上部叶片蛋白氮含量的植被指数   总被引:1,自引:0,他引:1  
 【目的】阐明水稻顶部4张叶片蛋白氮含量和反射光谱特征的变化规律及其相互关系,建立快速、准确诊断水稻功能叶片蛋白氮含量的方法。【方法】通过3年不同施氮水平和不同品种类型的大田试验,分生育期同步测定顶部4张叶片的光谱反射率及蛋白氮含量,系统分析叶片蛋白氮含量与多种高光谱参数的定量关系。【结果】水稻叶片蛋白氮含量和光谱反射率在不同施氮水平、不同生育期及不同叶位间均存在明显差异,叶片蛋白氮含量的敏感波段主要存在于可见光绿光区530~580 nm及红边区域695~715 nm,其中红边区域表现最为显著。红边区域700 nm附近波段与近红外短波段的比值组合(SRs)可以有效地估算水稻上部功能叶片的蛋白氮含量,其次是绿光区587 nm左右的波段与近红外短波段的比值组合。基于新提出的SR(770,700)及已报道的GM-2、SR705、RI-half光谱指数,线性回归模型的拟合精度(R2)分别达到 0.874,0.873,0.871和0.867。经独立资料的检验表明,这些回归模型可以实时监测叶片蛋白氮含量变化,预测精度R2分别为0.810、0.806、0.804和0.800,相对误差RE 分别为12.1%、12.4%、12.6%和12.9%。【结论】可以利用关键特征光谱指数来诊断水稻上部叶片的蛋白氮含量状况,尤以SR(770,700)、GM-2、SR705和RI-half表现为较强的估测能力。  相似文献   

15.
【目的】及时、有效地预测籽粒蛋白质含量,能够为优质小麦品种的收购和加工提供科学合理的决策支持信息。本研究从籽粒蛋白质形成的氮素运转规律出发,研究冬小麦籽粒蛋白质遥感预测的可行性及在区域与年际间的扩展性,为高分辨率遥感卫星进行大面积蛋白质预测提供理论依据。【方法】利用2012—2013年4个冬小麦品种×4个氮肥梯度的试验数据和地面高光谱数据进行建模;基于小麦籽粒蛋白质形成的氮素运转机理,通过分析籽粒氮素累积量的两个主要来源及其之间的比例关系,重点抓住开花前的植株氮素累积量再运转这一主要来源,而灌浆期根际的氮素直接吸收则通过其与前者的比例关系来确定,通过相关农学参数模型的耦合,同时加入温度影响因子对籽粒氮素运转的影响,初步阐明了利用开花期小麦叶片氮含量可以预测籽粒蛋白质含量的应用机理;然后选择与叶片氮含量相关的植被指数,利用灰色关联分析-偏最小二乘算法(GRA-PLS)选择与叶片氮含量关联度较高的植被指数并进行小麦叶片氮含量的估算,通过与氮素运转模型的耦合构建了基于氮素运转原理的籽粒蛋白质含量遥感预测模型;最后利用2009—2010年的品种×播期×肥料试验和2012—2013年的其他品种氮肥处理试验进行验证。【结果】(1)通过GRA方法对叶片氮含量和植被指数间的关联度进行计算,选择关联度较大的前5个植被指数进行叶片氮含量建模,其植被指数分别为mND705、NDVIcanste、Readone、DCNI和NDCI;(2)通过PLS方法构建的叶片氮含量模型,建模结果的预测值与实测值的决定系数(R2)和均方根误差(RMSE)分别为0.859和0.257%,验证结果的R2和RMSE分别为0.726和0.063%,利用GRA-PLS方法估算叶片氮素含量具有较好的稳定性;(3)构建的蛋白质预测模型,建模结果和验证结果的预测值与实测值的R2和RMSE分别为0.713、1.30%和0.609、1.19%,预测模型具有较高的精度与可靠性。【结论】基于氮素运转规律构建的小麦籽粒蛋白质含量遥感预测模型,可以作为应用开花期遥感信息来预测籽粒蛋白质含量的机理性解释,初步实现了本研究区域和年际间的籽粒蛋白质含量预测,具有一定的应用前景。  相似文献   

16.
Leaf nitrogen concentration (LNC), a good indicator of nitrogen (N) status in crops, is of special significance to diagnose nutrient stress and guide N fertilization in fields. Due to non-destructive and quick detectability, hyperspectral remote sensing plays a unique role in detecting LNC in crops. Barley, especially malting barley, is very demanding for N nutrition and requires timely monitoring and accurate estimation of N concentration in barley leaves. Hyperspectral techniques can help make effective diagnosis and facilitate dynamic regulation of plant N status. In this study, canopy reflectance spectra (between 350 and 1 050 nm) from 38 typical barley fields were measured as well as the corresponding LNC in Hailar Nongken, China’s Inner Mongolia Autonomous Region in July, 2010. Existing spectral indices that are considered to be good indicators for assessing N status in crops were selected to estimate LNC in barley. In addition, the optimal combination (OC) method was tested to extract the sensitive indices and first-order spectral derivative wavebands that are responsible for variation of leaf N in barley, and expected to develop some combination models for improving the accuracy of LNC estimates. The results showed that most of the selected indices (such as NPCI, PRI and DCNI) could adequately describe the dynamic changes of LNC in barley. The combined models based on OC performed better in comparison with the individual models using either spectral indices or first-order derivatives and the other methods (such as PCA). A combined model that integrated the first-order derivatives from five wavebands with OC performed well with R 2 of 0.82 and RMSE of 0.50 for LNC in barley. This good correlation with ground measurements indicates that hyperspectral reflectance and the OC method have good potential for assessing N status in barley.  相似文献   

17.
作物叶片氮含量的快速估算对于及时了解作物长势、病虫害监测以及产量评估具有重要意义。该文以经济作物生姜为研究对象,获取了2015年4月-9月不同品种、不同生育期和不同氮肥梯度下生姜叶片的高光谱和氮含量数据,对比分析了比值植被指数、归一化植被指数、植被指数组合形式对生姜叶片氮含量的估算效果。在此基础上,基于波段组合算法,筛选出了生姜叶片氮含量的敏感波段,并构建了两个新型光谱指数NDSI_((754,713))和RSI_((754,713))。结果表明,所选择的植被指数中,MCARI(705,750)/OSAVI(705,750)对生姜叶片氮含量估算效果最好,模型精度R~2、RMSE和RE分别为0.73、0.27、11.64%;利用波段组合算法构建的归一化光谱指数NDSI(754,713)对生姜叶片氮含量估算效果要优于MCARI(705,750)/OSAVI(705,750),模型估算精度R~2达0.83,使用的敏感波段713 nm与754 nm均位于植被的"红边"区域。对所建模型进行验证,叶片氮含量的预测值和实测值具有较好的一致性,验证样本R~2为0.78,RMSE为0.20,RE为9.81%。上述分析结果可为农业管理部门及时掌握生姜长势信息、制定施肥策略提供技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号