首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
几种田鼠交配行为的比较   总被引:3,自引:0,他引:3  
田鼠属啮齿动物的酱行为格局多变,其多样性的起源和功能与种群的社会组织和婚配制度有关。1998年6月-8月。在曲阜师范大学生物系动物实验室对东方田鼠的交配行为进行了研究。结果表明,东方田鼠的交配模式属于#11模式,即无限制、抽动、多次插入和多次射精,但有时射精前无多次插入;  相似文献   

2.
为了解食物对东方田鼠(Microtus fortis)种群的影响,笔者对洞庭湖幼年东方田鼠取食苔草进行研究,为了解东方田鼠种群增长提供基础,为东方田鼠综合管理提供参考。使用洞庭湖东方田鼠在洲滩环境的主要食物——苔草(Carex brevicuspis),在人工饲养条件下对20~30 日龄不同性别东方田鼠进行饲喂。结果表明:喂食1 周苔草后,雌性幼鼠体重明显下降(P<0.05),而雄性幼鼠体重略有增加,不显著(P>0.05);雌性幼鼠单位取食量和单位排泄量均稍高于雄性幼鼠,但差异不明显(P>0.05)。研究认为,在生长发育阶段,雌性幼鼠比雄性幼鼠对环境及食物的要求更高,单一食物会造成幼年雌鼠营养不良。  相似文献   

3.
四类东方田鼠的RAPD分析   总被引:7,自引:0,他引:7  
应用随机扩增多态DNA(RAPD)技术分析了湖南、宁夏、黑龙江大体型东方田鼠以及黑龙江小体型东方田鼠4类东方田鼠的基因组DNA。结果发现:4类东方田鼠类群内个体间的相似性都较高,湖南、宁夏、黑龙江大体型东方田鼠以及黑龙江小体型东方田鼠的类群内平均带纹相似系数(ABS)分别为0.9287±0.0436、0.9223±0.0533、0.9515±0.0289、0.8900±0.0328;湖南、宁夏和黑龙江大体型东方田鼠3类鼠之间的遗传相似系数都达0.9以上,遗传距离都小于0.1,黑龙江小体型东方田鼠与其他3类鼠的相似性较低,遗传相似系数在0.6762~0.7203之间,遗传距离在0.3281~0.3913之间;UPMGA聚类分析图显示湖南、宁夏和黑龙江大体型东方田鼠聚为一类,黑龙江小体型东方田鼠单独为一类;引物S2022可以作为区分黑龙江小体型东方田鼠与其他3类东方田鼠的标记引物。  相似文献   

4.
为了摸清东方田鼠的生态特性,自1999年开始,对害鼠的生活环境进行了跟踪调查,在此基础上,采用生物技术及物理技术对田鼠进行了监控治理,取得了良好效果,现总结如下。1田鼠危害情况(表1)2环境变化对东方田鼠的影响2.1土壤分布东方田鼠在黄土壤的分布大于河沙土,河沙土的分布大于碱土或黑碱土。2.2套种对田鼠的影响河滩地的林木受害重于湖边、沟边林地的林木,旱地套种区的林木受害大于不套种区的林木(表2)。2.3田埂、沟、渠、路边铲草对田鼠的影响(表3)结合农田整地和维修水利设施,对田埂、沟、渠、路边杂草进行铲除,使田鼠洞道及生活环境充分…  相似文献   

5.
目前黑龙江省发生的害鼠主要有黑线姬鼠、褐家鼠、小家鼠、大仓鼠、黑线仓鼠、达乌尔黄鼠、东方田鼠等。根据这些害鼠的特性制定了相应的综合防治技术措施,主要的技术要点有以下几方面。  相似文献   

6.
采用4亚种分类系统(东北亚种Microtusfortispelliceus、指名亚种M.f.fortis、长江亚种M.f.calamorum和福建亚种M.f.fujiandensis),对中国东方田鼠(M.fortis)生物生态学研究现状进行了综述。①中国东方田鼠的分类地位有争议,乌苏里江亚种(M.f.pelliceus)是否属于东方田鼠仍有待进一步研究;迄今为止,对长江亚种进行的研究较多,而对其它亚种的研究甚少。②从南部到北部都有东方田鼠分布,多栖息在低海拔地区,偏爱湿地生境。③该鼠主要以草本植物的绿色部分为食,为农林害鼠,化学防治东方田鼠采用敌鼠钠盐和复方灭鼠剂88-1对人畜比较安全,汛期还可结合物理方法对迁入洞庭湖稻田区的东方田鼠进行灭杀。④从南到北胎仔数、怀孕率有增加的趋势,繁殖期逐渐缩短。⑤沼泽扩展导致东方田鼠种群数量增加,而湖面围垦致使其数量下降。⑥该鼠昼夜均活动,但季节间存在差异,有季节性迁移行为,雌雄鼠均具有杀幼行为。  相似文献   

7.
副猪嗜血杆菌的分离鉴定   总被引:1,自引:0,他引:1       下载免费PDF全文
根据某猪场患病猪的临床症状和剖检变化,初步诊断为副猪嗜血杆菌引起。为确诊该病,从患病动物采取病料进行实验室检查,主要进行细菌形态特征、培养特性和生长特性的观察,生长因子、生化反应和动物实验等方面的鉴定,从而确诊该病的病原菌是副猪嗜血杆菌。同时,通过本研究也为临床上预防、诊断副猪嗜血杆菌病,进行疫苗的研制等方面提供了大量的实验依据。  相似文献   

8.
洞庭湖区东方田鼠2007年暴发成灾的原因剖析   总被引:7,自引:1,他引:7       下载免费PDF全文
2007年东方田鼠种群暴发是其种群数量自然波动到达高峰期的体现。洞庭湖湖泊泥沙淤积导致的沼泽化是其成灾的主要基础;而围湖造田、围湖灭螺和滥捕天敌乃是湖区东方田鼠上世纪70年代开始形成严重危害的直接原因;近期三峡工程和退田还湖工程又进一步加强了东方田鼠的暴发危害。因此必须高度关注东方田鼠种群的未来发展趋势。  相似文献   

9.
设计16对引物,完成了我国6个地区东方田鼠样本线粒体全基因组的扩增和测序拼接。结果表明:东方田鼠的线粒体全基因组长度为16 303—16 312 bp。利用线粒体全基因组构建的系统进化树表明,在我国分布的东方田鼠分为3个主要的分支:广西样本、宁夏指名亚种为代表的北方样本(包括宁夏、黑龙江、吉林)、湖南长江亚种为代表的湖南福建样本。对中国6个地区84个东方田鼠野生样本的线粒体上的细胞色素b基因(cyt b)进行重测序,并与其他亚洲近缘田鼠的同源序列比对,共发现13个东方田鼠特有的SNP位点。在线粒体基因组的结构上发现南方样本(广西、湖南、福建)与北方样本(宁夏、黑龙江、吉林)在线粒体基因组轻链复制区(O_L区)的二级结构颈环上有一个3碱基(CCC→TTT)的突变。这些多态性位点可以作为今后东方田鼠样本鉴别、遗传多样性研究的重要分子遗传标记。  相似文献   

10.
东方田鼠是洞庭湖区的重要农业害鼠,2007年东方田鼠再次大暴发.并具有发生量特别大、迁移时间推迟、危害时间长、造成损失大等特点,其大暴发主要与越冬基数大,枯水期延长,暖冬天气和三月降雨适中等因素有关.其综合治理对策足加大鼠情监测力度,切断东方田鼠迁移通道,阻止东方田鼠转移迁入,对迁入垸内农田的东方田鼠实施农业防治、生物防治、人工捕杀与化学毒饵诱杀相结合的综合治理措施,从而全面控制东方田鼠的危害.  相似文献   

11.
日本血吸虫新基因SjPP的筛选、克隆及对小鼠的免疫效果   总被引:8,自引:0,他引:8  
【目的】筛选克隆东方田鼠血清识别的日本血吸虫靶抗原基因,并研究其免疫保护效果。【方法】利用东方田鼠感染血清免疫筛选日本血吸虫(中国大陆株)成虫cDNA表达文库获得阳性克隆,以5′ RACE技术扩增获基因全长序列,构建含目的基因的核酸疫苗并研究在小鼠中的免疫保护效果。【结果】(1)获得4个日本血吸虫新的EST序列,即mfs-1(GenBank登录号BE974942)、mfs-3(GenBank登录号BE974944)、mfs-4(GenBank登录号BE974945)和mfs-5(GenBank登录号BE974946)。(2)mfs-5进行全长序列克隆,获得的日本血吸虫新基因SjPP(GenBank登录号AY902477)长1311 bp, 编码302个氨基酸,理论分子量为34.7 kD,等电点为5.51;其氨基酸序列具有丝/苏氨酸蛋白磷酸酶(serine/threonine specific protein phosphatase,简称PP)的保守序列LRGNHE,并且含有该酶特异性抑制剂冈田酸的作用位点SAPNYC,与人的PP6、鼠PP6、果蝇PPⅤ等蛋白的氨基酸序列具有高度同源性,分别达72%、70%和70%。(3)成功构建核酸疫苗pCMV-Script/SjPP,免疫BALB/c小鼠诱导产生肝组织减卵率为23.91%,粪便减卵率为31.91%。【结论】(1)获得日本血吸虫新的抗原基因SjPP。(2)含SjPP基因的核酸疫苗在小鼠中诱导了部分免疫保护效果。  相似文献   

12.
强壮弧菌Vibrio fortis是虾夷马粪海胆Strongylocentrotus intermedius的一种致病菌.为建立强壮弧菌的PCR检测方法,根据强壮弧菌gyrB基因的高度变异区序列设计引物,筛选出特异性强的3对引物VF-6、VF-7及VF-8,分别对强壮弧菌S0907及20株参比菌株进行PCR扩增,结果显示,3对引物均对强壮弧菌扩增出与预期大小一致的目的基因片段且参考菌株无扩增条带.以不同稀释度的菌悬液制备的DNA模板进行PCR扩增,结果显示,3对引物VF-6、VF-7及VF-8可检测的最低细菌浓度分别为4.1×104、4.1×103、4.1 ×102cfu/mL;对不同稀释度的细菌DNA模板进行PCR扩增,结果显示,3对引物VF-6、VF-7及VF-8可检测的最低DNA含量分别为1.4、0.14、0.014 pg/μL.试验结果表明:3对引物的特异性均较好,但灵敏度存在差异,其中以VF-8为引物的PCR检测方法最佳;使用以VF-8为引物的PCR检测方法对实验室养殖海胆及其生境样品进行初步检测,健康海胆、养殖海水及投喂的海带均为阴性,而自然海域海水中带有一定量的强壮弧菌.  相似文献   

13.
Character displacement resulting from interspecific competition has been extremely difficult to demonstrate. The problem was addressed with a study of Darwin's ground finches (Geospiza). Beak sizes of populations of G. fortis and G. fuliginosa in sympatry and allopatry were compared by a procedure that controls for any possible effects on morphology of variation among locations in food supply. The results provide strong evidence for character displacement. Measurement of natural selection in a population of G. fortis on an island (Daphne) lacking a resident population of G. fuliginosa shows how exploitation of G. fuliginosa foods affects the differential survival of G. fortis phenotypes.  相似文献   

14.
鼠害对长江中下游可持续农业发展的影响及防治对策   总被引:4,自引:0,他引:4  
 长江中下游的地理位置和适宜的气候条件 ,决定了害鼠的种类丰富、繁殖力高。而灭鼠方法不科学和气候变化以及人类活动的影响 ,使鼠密度维持在较高水平 ,危害区域不断扩展。为了维护生态平衡和保护环境 ,促进农业可持续发展 ,对目前在鼠害防治中存在的滥用急性灭鼠剂和不科学的灭鼠方法必须予以重视。有必要掌握害鼠的发生发展规律 ,在鼠害防治中树立生态与综合治理的观念 ,加强科普宣传力度 ,提高群众的生态和环保意识 ,使用先进科学的灭鼠方法。众多的江河湖泊及每年水位的变化影响着该地害鼠种群的发生发展 ,经常暴发的洪灾有引发鼠传疾病流行的可能 ,灾后必须注意防治鼠害。重大水利工程对引起某些害鼠的暴发成灾方面已有正反两方面的经验 ,长江三峡工程也将对某些害鼠的发生发展产生影响。  相似文献   

15.
Population cycles in small rodents   总被引:6,自引:0,他引:6  
We conclude that population fluctuations in Microtus in southern Indiana are produced by a syndrome of changes in birth and death rates similar to that found in other species of voles and lemmings. The mechanisms which cause the changes in birth and death rates are demolished by fencing the population so that no dispersal can occur. Dispersal thus seems critical for population regulation in Microtus. Because most dispersal occurs during the increase phase of the population cycle and there is little dispersal during the decline phase, dispersal is not directly related to population density. Hence the quality of dispersing animals must be important, and we have found one case of increased dispersal tendency by one genotype. The failure of population regulation of Microtus in enclosed areas requires an explanation by any hypothesis attempting to explain population cycles in small rodents. It might be suggested that the fence changed the predation pressure on the enclosed populations. However, the fence was only 2 feet (0.6 meter) high and did not stop the entrance of foxes, weasels, shrews, or avian predators. A striking feature was that the habitat in the enclosures quickly recovered from complete devastation by the start of the spring growing season. Obviously the habitat and food quality were sufficient to support Microtus populations of abnormally high densities, and recovery of the habitat was sufficiently quick that the introduction of new animals to these enclosed areas resulted in another population explosion. Finally, hypotheses of population regulation by social stress must account for the finding that Microtus can exist at densities several times greater than normal without "stress" taking an obvious toll. We hypothesize that the prevention of dispersal changes the quality of the populations in the enclosures in comparison to those outside the fence. Voles forced to remain in an overcrowded fenced population do not suffer high mortality rates and continue to reproduce at abnormally high densities until starvation overtakes them. The initial behavioral interactions associated with crowding do not seem sufficient to cause voles to die in situ. What happens to animals during the population decline? Our studies have not answered this question. The animals did not appear to disperse, but it is possible that the method we used to measure dispersal (movement into a vacant habitat) missed a large segment of dispersing voles which did not remain in the vacant area but kept on moving. Perhaps the dispersal during the increase phase of the population cycle is a colonization type of dispersal, and the animals taking part in it are likely to stay in a new habitat, while during the population decline dispersal is a pathological response to high density, and the animals are not attracted to settling even in a vacant habitat. The alternative to this suggestion is that animals are dying in situ during the decline because of physiological or genetically determined behavioral stress. Thus the fencing of a population prevents the change in rates of survival and reproduction, from high rates in the increase phase to low rates in the decline phase, and the fenced populations resemble "mouse plagues." A possible explanation is that the differential dispersal of animals during the phase of increase causes the quality of the voles remaining at peak densities in wild populations to be different from the quality of voles at much higher densities in enclosures. Increased sensitivity to density in Microtus could cause the decline of wild populations at densities lower than those reached by fenced populations in which selection through dispersal has been prevented. Fencing might also alter the social interactions among Microtus in other ways that are not understood. The analysis of colonizing species by MacArthur and Wilson (27) can be applied to our studies of dispersal in populations of Microtus. Groups of organisms with good dispersal and colonizing ability are called r strategists because they have high reproductive potential and are able to exploit a new environment rapidly. Dispersing voles seem to be r strategists. Young females in breeding condition were over-represented in dispersing female Microtus (17). The Tf(C)/Tf(E) females, which were more common among dispersers during the phase of population increase (Fig. 6), also have a slight reproductive advantage over the other Tf genotypes (19). Thus in Microtus populations the animals with the highest reproductive potential, the r strategists, are dispersing. The segment of the population which remains behind after the selection-via-dispersal are those individuals which are less influenced by increasing population densities. These are the individuals which maximize use of the habitat, the K strategists in MacArthur and Wilson's terminology, or voles selected for spacing behavior. Thus we can describe population cycles in Microtus in the same theoretical framework as colonizing species on islands. Our work on Microtus is consistent with the hypothesis of genetic and behavioral effects proposed by Chitty (6) (Fig. 7) in that it shows both behavioral differences in males during the phases of population fluctuation and periods of strong genetic selection. The greatest gaps in our knowledge are in the area of genetic-behavioral interactions which are most difficult to measure. We have no information on the heritability of aggressive behavior in voles. The pathways by which behavioral events are translated into physiological changes which affect reproduction and growth have been carefully analyzed by Christian and his associates (28) for rodents in laboratory situations, but the application of these findings to the complex field events described above remains to be done. Several experiments are suggested by our work. First, other populations of other rodent species should increase to abnormal densities if enclosed in a large fenced area (29). We need to find situations in which this prediction is not fulfilled. Island populations may be an important source of material for such an experiment (30). Second, if one-way exit doors were provided from a fenced area, normal population regulation through dispersal should occur. This experiment would provide another method by which dispersers could be identified. Third, if dispersal were prevented after a population reached peak densities, a normal decline phase should occur. This prediction is based on the assumption that dispersal during the increase phase is sufficient to ensure the decline phase 1 or 2 years later. All these experiments are concerned with the dispersal factor, and our work on Microtus can be summarized by the admonition: study dispersal.  相似文献   

16.
为探讨线粒体能量代谢中细胞色素c氧化酶(cytochromecoxidase,CcO)在布氏田鼠(Microtusbrandti)生长发育过程中的作用,应用紫外分光光度法测定了不同日龄的幼鼠肝脏内线粒体蛋白含量及CcO活性。结果发现根据幼鼠肝脏内线粒体蛋白的含量可将生长发育大致分为3个阶段:1~3日龄,4~19日龄,20日龄至成体。CcO活性变化趋势则呈倒钟形,以17日龄的CcO活性为最高。据此推测布氏田鼠肝脏内CcO的活性可能与恒温机制的建立有关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号