首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 141 毫秒
1.
利用ISSR标记分析烟草种质的遗传多样性   总被引:11,自引:0,他引:11  
肖炳光  杨本超 《中国农业科学》2007,40(10):2153-2161
 【目的】分析烟草种质的遗传多样性水平,揭示不同烟草类型间的遗传关系,为充分发掘、利用种质提供依据。【方法】对包括不同烟草类型的119份种质进行了ISSR分析,估算其遗传相似系数,利用UPGMA法作聚类图。【结果】利用21个ISSR引物共扩增出672条带,全部为多态性带,其中116条为普通烟草特有带。普通烟草种质间的遗传相似系数变化范围为0.779~0.945,其中烤烟种质间遗传相似系数变化范围在0.812~0.933之间;不同烟草类型基本可聚为相应的亚类或小类,引进烤烟品种与国内品种并未聚为各自类别。普通烟草与其它烟草种间遗传相似系数较小;普通烟草与其假定祖先种N.sylvestris聚为一类,同为碧冬烟草亚属花烟草组的N.longiflora和N.plumbaginifolia聚为一类,聚类结果与种间遗传分化吻合。【结论】中国现有烤烟种质遗传多样性水平较低;为拓宽烤烟育成品种的遗传基础,应充分发掘野生烟草的遗传潜力。  相似文献   

2.
烟草种质资源遗传多样性与亲缘关系的ISSR聚类分析   总被引:26,自引:1,他引:25  
 【目的】深化烟草种质资源遗传多样性研究,为种质利用改良烟草提供科学依据。【方法】应用ISSR分子标记方法,以烟草属6个种共96份有代表性的种质为材料,进行遗传多样性与亲缘关系分析。【结果】(1)从90个ISSR引物中筛选出18个多态性引物对全部实验材料进行PCR扩增,共获得314条稳定的条带,其中多态性条带299条(占95.2%)。(2)应用Nei-Li相似系数法估算了96份材料间的遗传相似系数(GS),其GS在0.28~0.97之间,遗传多样性丰富。其中普通烟草栽培品种间的GS在0.62~0.98之间,平均为0.78,品种间的遗传基础相对狭窄,普通烟草栽培种与野生种及黄花烟的GS在0.28~0.58之间,平均为0.42,种间遗传差异较大;(3)对91份普通烟草栽培品种的分子系统聚类分析表明:地理来源相同的部分品种有相对聚合现象或少部分国内外品种和类型出现交叉聚类,与其亲缘关系较近有关;个别品种自行一类,与其特异的遗传基础差异较大有关。【结论】ISSR是一种较有效、稳定和可靠的分子标记,本研究可为烟草育种的亲本利用及开展烟草遗传连锁图的构建和核心种质指纹图谱的绘制提供重要的科学依据。  相似文献   

3.
【目的】分析 50 份来自全国各地的黄瓜核心种质资源的遗传多样性,为黄瓜育种提供依据和参考。【方法】对 50 份黄瓜核心种质资源的重要外观农艺性状进行统计,并利用全基因组设计 66 对 SSR 引物对其进行分子标记筛选及遗传多样性聚类分析。【结果】供试 50 份黄瓜核心种质材料的瓜皮颜色、刺瘤、瓜皮斑纹具有多样性。66 对引物中有 32 对引物能够在不同黄瓜种质间扩增出清晰而稳定的多态性标记,这 32 对 SSR 引物共扩增出 280 个等位基因片段,其中多态性片段 216 个、占片段总数的 77.1%,表明本研究筛选出的 32 对 SSR 引物遗传多态性较高,适用于黄瓜种质材料的遗传多样性分析。聚类结果与所调查的种质资源性状表现结果较为一致。50 份黄瓜核心种质遗传相似系数最低为 0.62、最高达 1.00。在遗传相似系数 0.754 处,50 份黄瓜种质材料聚为 7 类,即 9 份华南型材料聚为 6 类:I 类、III 类、IV 类、V 类、VI 类、VII 类,其中 IV 类包含 1 份中间材料与 9 号华南型材料;40 份华北型黄瓜材料聚为 1 类:II 类。表明华北型黄瓜材料和华南型黄瓜材料间相似系数低、亲缘关系远;华北型黄瓜材料间相似系数高、亲缘关系近、遗传背景窄、遗传多样性差;而华南型黄瓜材料间相似系数较低、亲缘关系较远、遗传背景宽、遗传多样性丰富。【结论】筛选出 32 对 SSR 引物可有效对 50 份黄瓜核心种质材料进行聚类分析,遗传相似系数为 0.754 处 50 份黄瓜材料聚为 7 类,其结果与性状调查结果相吻合;华北型黄瓜遗传背景窄、遗传多样性差,华南型黄瓜遗传背景相对较宽,遗传多样性丰富。  相似文献   

4.
【目的】分析卡特兰属(Cattleya)植物的遗传多样性并评价其亲缘关系,为卡特兰的品种鉴别、分类、遗传图谱构建及分子育种打下基础。【方法】采用ISSR分子标记技术,从100条ISSR引物中筛选出扩增条带清晰、多态性高、重复性好的引物对18份卡特兰种质资源进行PCR扩增,并利用GenAlEx 6.51计算各种间的遗传多样性参数;采用NTSYS 2.1的非加权算术平均聚类(UPGMA)法进行聚类分析。【结果】利用筛选出的6条引物对供试材料进行PCR扩增获得153条谱带,多态性条带比率达100%;遗传多样性参数中,平均观测等位基因数(Na)为2.000个,平均有效等位基因数(Ne)为1.207个,平均Nei’s遗传多样性指数(He)为0.157,平均Shannon信息多样性指数(I)为0.281;卡特兰种质资源间的遗传相似系数在0.6514~0.8991;UPGMA聚类分析结果表明,在相似系数0.749处,可将18份卡特兰种质资源划分为6个类群。【结论】卡特兰种质资源间具有丰富的遗传多样性;UPGMA聚类分析结果与传统的形态学分类结果基本一致,18份卡特兰种质资源分别隶属于卡特亚属、波浪边亚属、类匈伯加亚属、镰刀形花亚属、因特美地亚属、藕茎花亚属和圈聚花兰属7个属。  相似文献   

5.
【目的】本研究对采自中国云南德宏、保山、西双版纳、普洱、红河和缅甸克钦邦、掸邦地区共90份鳄梨种资资源进行遗传多样性分析,为其新品种选育和种质创新提供参考依据。【方法】采用CTAB法提取鳄梨叶片基因组DNA,利用扩增片段长度多态性分子标记技术,对90份种质资源的基因组DNA进行酶切、连接、预扩增、选择性扩增,电泳分离,银染显色。电泳结果得到"0,1"矩阵,使用POPGENE 32软件计算每对引物的多态性条带、多态性比率、有效等位基因数、遗传多样性指数等指标,同时使用NTSYSpc-2.11F计算种质间遗传相似系数,根据相似性系数进行UPGMA聚类分析和PCA主效应分析,对鳄梨种质资源进行分类。【结果】从24对AFLP引物组合中,筛选出8对扩增条带清晰、多态性高的引物组合,8对引物共扩增出1 165个条带,其中多态性条带有1 163个,多态位点百分率为99.83%;有效等位基因数(Ne)平均1.294 4个;Nei’s基因多样性指数(H)平均0.209 5;Shannon信息指数(I)平均0.353 0。根据遗传相似系数进行聚类分析,在遗传相似系数0.752处可划分为4个类群,第Ⅰ类群有1份保山种质70号;第Ⅱ类群有24份种质;第Ⅲ类群有1份西双版纳种质59号;第Ⅳ类群有64份种质。在遗传相似系数0.763处可将第Ⅳ类群划分为3个亚群(A、B和C)。用PCA法对90份鳄梨种质AFLP标记结果进行主效应分析,显示了不同种质的分类位置,主效应分析结果与分子聚类结果基本一致,呈一定的地域性分布规律。【结论】90份种质资源的遗传多样性较为丰富,59号和70号相对特殊,在种质创新中应给予重点关注。  相似文献   

6.
 利用 12对AFLP引物 ,以饭豆标准品系M 0 0作对照 ,对来自中国、日本、韩国、尼泊尔、印度、不丹的 14 6份小豆栽培种 (Vignaangularisvar.angularis)和野生种 (Vignaangularisvar.nipponensis)种质的基因组DNA进行扩增 ,得到 313条多态性带。据AFLP多态性数据绘制的聚类图 ,可区分其中的 14 3份种质 ,表明小豆物种 (Vi gnaangularis)存在足够的遗传多样性 ,可用于资源材料的准确鉴别与分类。鉴于此 ,采用新开发的利用AFLP数据揭示核苷多样性的Innan’s进化树分析方法 ,进一步将 14 6份小豆资源分成 7个明显不同的地理演化群 ,即中国栽培种、日本栽培种、日本综合群 韩国栽培种、中国台湾野生种、中国野生种、尼泊尔 不丹栽培种和喜马拉雅野生种演化群。就上述地理演化群的遗传多样性、地理分布以及野生种与栽培种之间可能的演化关系进行了分析 ,初步认为栽培小豆至少应当有 4个不同类型的野生祖先和 3个不同的地理起源。  相似文献   

7.
应用SRAP分子标记构建红麻种质资源分子身份证   总被引:2,自引:2,他引:0  
【目的】以来源于不同国家和地区的127份红麻栽培种、野生种和近缘种为材料,利用SRAP标记构建红麻种质资源分子身份证。【方法】利用SRAP标记对127份红麻种质进行遗传分析,计算其遗传相似系数。利用UPGMA法作聚类图,构建分子身份证。【结果】40对引物组合在127份红麻种质材料中共扩增出383条DNA片段,其中,375条为多态性片段,总的多态性条带比率(PPB)为97.9%。UPGMA聚类分析结果表明,相似系数为0.70时,127份红麻种质资源被划分为4个类群。用SRAP特征谱带和多种引物组合2种方法可有效区分所有材料,并构建出127份红麻种质资源特异性分子身份证,置信概率达到99.99%。【结论】基于15对SRAP核心引物组合的36条谱带构建了一套127份红麻种质资源唯一性的分子身份证。  相似文献   

8.
利用ISSR和RAPD标记构建红麻种质资源分子身份证   总被引:5,自引:3,他引:2  
【目的】对来源于不同国家和地区的51份红麻栽培种、野生种和近缘种进行遗传分析,构建红麻种质资源分子身份证。【方法】利用ISSR和RAPD标记对不同类型的51份红麻种质资源进行分析,计算其遗传相似系数,利用UPGMA法作聚类图,建立分子身份证。【结果】19个ISSR标记共产生113条条带,其中101条为多态性带,多态性比率(PPB)为89.38%;20个RAPD标记共产生118条条带,其中112条为多态性带,多态性比率(PPB)为94.92%。品种间多态性丰富,结合特征带、特异谱带类型和不同引物组合3种分析方法,可有效建立51份红麻种质资源的特异分子身份证。【结论】材料间遗传多样性较高,有较远的遗传距离和较宽的遗传基础,ISSR和RAPD标记技术可有效用于建立红麻种质资源分子身份证。  相似文献   

9.
利用AFLP鉴定沙田柚新种质   总被引:1,自引:1,他引:0  
【目的】鉴定沙田柚新种质的遗传分类,为其利用提供参考。【方法】选用64对AFLP引物组合,对12份柚类种质资源进行遗传多样性分析及分类研究。【结果】从64对引物中筛选出12对AFLP引物组合,在12份柚类材料中扩增出399条清晰条带,每对引物扩增条带数为25~49条,平均每对引物扩增条带33.25条;多态性条带91条,多态性比例为22.8%。供试材料相似系数在0.752~0.956,AFLP鉴定结果显示桂柚1号与沙田柚相似系数为0.956,早熟沙田柚与沙田柚相似系数为0.920;早熟酸柚和福建酸柚两个品种与其他柚类亲缘关系较远;以0.830为相似系数的阈值,可以将12份柚类材料分为5类。【结论】AFLP分子标记技术能将12份柚类材料区分开;早熟沙田柚与桂柚1号是不同于沙田柚的变异新种质,可以直接作为品种资源加以利用。  相似文献   

10.
烟草种质资源遗传多样性及亲缘关系的AFLP分析   总被引:14,自引:4,他引:14  
 【目的】揭示烟草种质资源的遗传多样性及亲缘关系。【方法】选用4对AFLP选择性扩增引物(EcoRI+3/MseI+3)对48份烟草材料的基因组DNA进行选择性扩增。【结果】共获得321条扩增带,其中174条具有多态性,平均多态检出率为54.2%。对AFLP扩增结果采用UPGMA法进行聚类分析,可以将48份烟草资源分为两大类群,即黄花烟草群和普通烟草群,普通烟草可进一步分为4组;48份材料的遗传距离变幅在1.41~11.0之间。【结论】AFLP标记技术能较好地从分子水平揭示中国烟草种质资源的遗传背景、亲缘关系及演化规律。  相似文献   

11.
大兴安岭地区野生黑木耳菌株SRAP的遗传多样性分析   总被引:3,自引:0,他引:3  
 【目的】对大兴安岭地区野生黑木耳菌株进行遗传多样性分析。【方法】利用PCR-SRAP体系,选出9对SRAP引物对18个野生菌株和6个栽培菌株DNA进行扩增,通过NTSYSpc软件对遗传多样性进行分析。【结果】通过PCR扩增,9对引物共扩增到90条条带,其中78条多态性条带,多态性比率为87.0%。平均每条引物扩增的条带数和多态性条带数分别为10.00条和8.67条。多态性信息含量(PIC)变化在0.051—0.918,平均为0.683,所揭示的基因型数平均为15.78个。聚类分析结果表明,遗传相似系数在0.63水平上,可分为5个类群。【结论】SRAP标记技术在栽培与野生菌株间都表现出明显的遗传差异性,此技术可用于遗传多样性的分析研究。  相似文献   

12.
花生优异种质的分子标记与遗传多样性分析   总被引:8,自引:0,他引:8  
【目的】通过对花生遗传多样性的研究,为花生育种提供理论依据。【方法】运用ISSR和SRAP2种标记对24份重要花生种质资源的遗传多样性进行分析。【结果】32条ISSR引物中的13条引物共扩增出390条条带,其中多态性条带有293条,75.13%的条带可以揭示材料之间的遗传差异;252对SRAP引物中有229对引物为有效引物,共扩增出5827条可读的条带,其中多态性条带为3966条,平均每对引物可扩增17.32条条带。利用2种分子标记计算的相似系数的变化范围为0.60—0.80,将24份种质按系统聚类分析可以分为7组,按主坐标分析可以分为8组,从分子水平上解释了这些种质资源的遗传多样性水平和亲缘关系。【结论】ISSR和SRAP是非常有效、稳定和可靠的分子标记,可为花生育种的亲本利用及遗传连锁图的构建提供重要的科学依据。  相似文献   

13.
甘草野生种群遗传多样性的AFLP分析   总被引:5,自引:0,他引:5  
 【目的】甘草具有重要的药用、工业和生态价值,目前处于濒危状态,进行遗传多样性研究可以为甘草资源的保护和利用奠定基础。【方法】利用AFLP分子标记对来自中国甘草主产区的16个野生种群共320个单株进行遗传多样性研究。【结果】(1)利用15对AFLP引物共扩增出759条谱带,其中多态性谱带527条,多态性条带百分率为69.43%;(2)Nei’基因多样性指数为0.13~0.19,种群总体多样性指数为0.25;Shannon多态性信息指数的变异范围在0.19~0.28,总体为0.39;宁夏地区甘草种群遗传多样性水平最高,甘肃酒泉种群的遗传多样性水平最低。(3)AMOVA分析表明甘草种群间的遗传变异占总变异的18.64%,种群内变异占67.16%。利用UPGMA聚类可将供试16个群体划分为3类,聚类结果表现出明显的地域性。【结论】该研究明确了中国野生甘草遗传多样性处于中等偏下水平,种群内广泛的变异能够为野生资源保护和良种选育提供理论依据。  相似文献   

14.
普通烟草及其祖先种基因组SSR位点分析   总被引:3,自引:1,他引:2  
【目的】普通烟草(N.tabacum,2n=24Ⅱ=48 TTSS)及其2个祖先种-绒毛状烟草(N.tomentosoformis,2n=12Ⅱ=24 TT)和林烟草(N.sylvestris,2n=12Ⅱ=24 SS)基因组SSR位点信息的统计分析,有助于烟草属植物的遗传分析。【方法】从公共数据库NCBI(National Center for Biotechnology Information)中下载上述3个烟草基因组数据,应用SSRIT和TRF软件分析其各自SSR位点分布特征,每个基因组随机合成50对SSR引物扩增多态性。【结果】在绒毛状烟草基因组、林烟草基因组和普通烟草基因组中分别获得218 081、263 478和397 432个SSR总位点,其间的平均距离分别为7.52、7.78和9.06 kb。绝大部分的SSR位点分布在内含子和UTR(尤其是5′-UTR)区域;以2核苷酸和3核苷酸类型为主,占基因组内SSR位点总数目的 2/3以上,其中,2核苷酸类型丰度最高;含有A(T)n基序结构的频率及数量最高;除单核苷酸类型外,重复次数多在3—10。150对合成的引物对8个烟草种DNAs进行PCR反应,所有材料均能扩增出清晰稳定的目标片段,其中36对引物显示多态性。【结论】绒毛状烟草、林烟草和普通烟草基因组内SSR呈现一定的分布特征,表明SSR位点在亲缘关系相对较近的烟草种间具有高度保守性。  相似文献   

15.
【目的】利用SSR标记进行毛葡萄遗传多样性的分析,阐明毛葡萄种质的亲缘关系,为有效利用野生毛葡萄种质及挖掘优良基因提供参考。【方法】利用筛选的多态性SSR引物对70份毛葡萄进行SSR扩增,评价不同种质遗传多样性,并分析亲缘关系。【结果】从40对SSR引物中筛选出16对多态性引物,共扩增出123 条带,每对引物可检测到等位位点数3-15个,多态率26.7%-100.0%。PopGene分析结果表明,毛葡萄种群Nei’s 基因多样性平均指数为0.4412,多样性信息平均指数为0.6308,具有较高的遗传多样性。Nei’s相似性系数分析结果表明,70份毛葡萄种质的遗传相似系数在0.60-0.89。UPGMA 聚类分析结果表明,在遗传相似系数0.61 处,70 份毛葡萄材料可分为3大类群:第一类包含两份毛葡萄材料,编号为70和91,均来自广西罗城县;第二类包含5份材料,编号为28、1、129、3和131,除131外,其余4份来自广西罗城县;其他63份归为第三类,其中50份为广西罗城县毛葡萄。【结论】广西罗城县毛葡萄具有丰富的遗传多样性,可为毛葡萄种质资源的利用和品种选育提供参考。  相似文献   

16.
【目的】从分子水平上了解不同地区荸荠地方品种的亲缘关系及遗传多样性,为荸荠品种资源研究和选育提供理论依据。【方法】利用RAPD分子标记技术,对24个不同地区荸荠地方品种进行遗传多样性及聚类分析。【结果】从100条RAPD引物筛选出条带清晰、多态性理想的引物15条,共扩增出83条清晰带,其中多态性带为61条,多态性比例为73.5%。24个荸荠地方品种间的遗传距离为0.0976~0.6757,平均为0.3048;UPGMA聚类分析可将24份荸荠品种分为5组,其中第4组又可分为两个亚组,野生荸荠单独归为一亚组。【结论】24份荸荠品种的遗传基础相对较狭窄,亲缘关系较近,但部分不同地区栽培品种之间仍存在一定的遗传差异性。  相似文献   

17.
不同类型小豆种质SSR标记遗传多样性及性状关联分析   总被引:6,自引:2,他引:4  
 【目的】研究野生、半野生、栽培型小豆的遗传多样性,进一步阐明小豆的起源进化与传播,提高小豆种质的利用效率。【方法】从69对小豆和黑吉豆SSR引物中,筛选出11对多态性好的SSR标记,并结合植株形态性状特征鉴定,对558份来自中国、日本、韩国、不丹、缅甸的野生、半野生和栽培小豆种质资源进行遗传多样性分析和性状关联分析。【结果】共检测到86个等位变异,平均每个位点等位变异数为7.82个,变幅6—10个。野生、半野生、栽培型小豆都有其特征带,栽培小豆的特征带绝大多数来源于中国;野生小豆的特征带仅出现在中国西南、不丹和日本南部地区的种质中。遗传离散度是野生型>半野生型>栽培型,半野生型小豆更接近野生型小豆。聚类分析把558个小豆种质分为5大类,归类有较明显的地理相关性和遗传类型的趋同性。日本栽培小豆与韩国和日本野生及半野生小豆亲缘关系近,中国西南野生小豆与东南亚野生材料遗传关系近,与江苏地方品种遗传关系较近。关联分析表明,位于小豆第7连锁群的黑吉豆BG111标记分别解释野生和半野生小豆的主茎节数、茎粗、顶蔓、主茎分枝数性状的49%、44%、31%和18%;栽培小豆中,第1连锁群的黑吉豆BG48、第5连锁群的BG20和第9连锁群的小豆AZ24标记分别解释生育期、株高和单荚粒数、主茎分枝数性状的9%、7%、5%和6%。【结论】野生小豆遗传多样性丰富、变异背景广泛;中国栽培小豆起源于中国,具有丰富的遗传变异。黑吉豆BG111标记与野生和半野生小豆的茎粗、顶蔓、主茎分枝数、主茎节数性状相关联;黑吉豆BG48和BG20、小豆AZ24标记分别与栽培小豆的生育期、株高和单荚粒数、主茎分枝数相关联。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号