首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
缺钙花生严重空荚(胚胎败育)导致减产降质长期困扰南方花生生产。以大田种植为基础,通过mRNA基因差异显示从花生幼胚筛选得到一个包含编码区和3’-UTR在内的cDNA近全长序列,命名为pMADS08(GenBank登录号:AY517932)。该cDNA长度为785bp,编码261个氨基酸,由MADS区、I区、K区和C末端组成。序列相似性分析结果表明,该基因具有典型的植物MIKC型MADS box基因结构,其氨基酸序列与豌豆(Pisum sativum)的AP1/AGL9亚族的一个MADS box转录因子有很高的同源性(84%),该基因在豌豆种皮发育过程中表达。pMADS08基因在足、缺钙组花生的不同组织(叶片、花、果实〈9d〉)表达量明显不同,提示该基因可能与花生抗缺钙等营养逆境有关。  相似文献   

2.
以杜仲(Eucommia ulmoides Olive)4、5月份新长成的杜仲幼嫩叶片为材料,在克隆一段肉桂醇脱氢酶(cin-namyl alcohol dehydrogenase,CAD)基因的基础上,以杜仲cDNA为模板,采用cDNA末端快速扩增法(Rapid ampli-fication of cDNA Ends,RACE)克隆了5’端828 bp和3’端798 bp cDNA序列,经5’RACE产物和3’RACE产物序列拼接,获得全长为1243bp的杜仲CAD cDNA序列,开放阅读框编码243个氨基酸,命名为EuCAD(GenBank登录号:DQ142643)。与GenBank中序列比对分析发现,该cDNA序列与苹果树、桉树、红橡树中的CAD基因序列同源性均为81%,预测编码的氨基酸序列与苹果树、桉树、红橡树的同源性分别为73%、70%和70%,因此认为是杜仲肉桂醇脱氢酶基因。该基因为首次从杜仲中克隆,为探索木质素的合成调控机理奠定基础。  相似文献   

3.
【目的】克隆蝴蝶兰MADS-Box基因并构建其正义和反义植物表达载体,为其功能研究奠定基础。【方法】以蝴蝶兰杂交品种(Phalaenopsis hybrid cv.Jiuhbao Red Rose)为试验材料,采用RT-PCR和RACE技术从花葶中克隆MADS-Box基因,并构建正义和反义植物表达载体。【结果】克隆获得一个蝴蝶兰MADS-Box基因,命名为DtpsMADS1(GeneBank登录号JQ065097)。该基因cDNA全长960 bp,包含37 bp的5'非编码区、185 bp的3'非编码区和一个738 bp的编码区;该基因编码245个氨基酸。生物信息学分析结果表明,该基因编码的蛋白质为碱性亲水性蛋白,具有62.45%的α-螺旋,8.16%的延伸链和29.39%的不规则折叠。序列比对和系统进化分析结果表明,DtpsMADS1与蝴蝶兰ORAP13的亲缘关系最近,同源性达99.0%,与石斛和蕙兰的同源性分别为83.0%和82.0%,属于MADS家族A类亚家族。将DtpsMADS1基因连接到植物表达载体pBI121上,构建获得正、反义植物表达载体pBI121-DtpsMADS1-S和pBI121-DtpsMADS1-A。【结论】成功克隆的蝴蝶兰DtpsMADS1基因属于MADS家族A类亚家族,具有明显的保守性和特异性,可为蝴蝶兰DtpsMADS1基因功能的鉴定及蝴蝶兰的遗传改良奠定基础。  相似文献   

4.
[目的]分离克隆马尾松α-蒎烯合成酶基因cDNA全长.[方法]根据其他松科植物α-蒎烯合成酶基因保守区域设计引物,扩增出基因的部分片段,再结合RACE技术分别扩增出基因3’端和5’端序列,通过序列拼接获得cDNA全长,结合生物信息学软件分析该基因编码蛋白的特性.[结果]马尾松α-蒎烯合成酶基因cDNA全长为2 103 bp,编码区1 980 bp,编码629个氨基酸,含有1个N端结构域、1个金属结合结构域和1个天冬氨酸富集基序(DDMYD).[结论]该方法成功克隆了马尾松α-蒎烯合成酶基因cDNA全长序列,具有单萜烯合成酶基因的典型特征,序列提交至GenBank,获得登录号KF547035.  相似文献   

5.
龙眼子叶胚3-磷酸甘油醛脱氢酶基因的cDNA克隆及序列分析   总被引:1,自引:0,他引:1  
从龙眼子叶胚中分离得到一个大量表达的表达序列标签(EST),该EST编码序列与金鱼草3-磷酸甘油醛脱氢酶(GAPDH)基因的同源性为84%,利用cDNA末端快速扩增(RACE)技术成功克隆了龙眼GAPDH基因全长序列.序列分析表明,龙眼GAPDH基因的cDNA全长为1395 bp,包括一个长1008 bp、编码336个氨基酸的开放阅读框(ORF),5′端非编码区(UTR)长71 bp,3′-UTR长316 bp.龙眼GAPDH基因编码的氨基酸序列与水稻、葡萄、小果野蕉、拟南芥、银杏等GAPDH基因的氨基酸序列同源性均高达85%以上,该基因在GenBank中的登录号为FJ694011.  相似文献   

6.
球毛壳菌二烯醇内酯水解酶基因克隆及序列分析   总被引:1,自引:0,他引:1  
以球毛壳茵cDNA文库中获得的二烯醇内酯水解酶基因片段(GenBank Accn:BP099060)为基础,用RACE技术克隆出该基因的全长cDNA序列。序列长919bp,由450bp的3’RACE产物和608bp的5’RACE产物拼接而成。开放阅读框762bp,编码253个氨基酸组成的多肽,蛋白分子量为27.5kD,理论等电点为5.98。利用cDNA两侧非编码区序列作引物克隆出该基因的DNA序列。序列分析表明,该基因由2个内含子和3个外显子组成,外显子与内含子剪连接区符合AG—GT规则。克隆的cDNA序列、DNA序列及推测的氨基酸序列在GenBank登录(登录号分别为AY465528,AY555772,AAS66899)。  相似文献   

7.
MADS—box基因家族在决定花分生组织特性和花器官发育过程中起着重要的作用。以绿竹Bambusaoldhamii开花试管苗花芽为植物材料,采用cDNA末端快速扩增技术(rapid amplification of cDNAends,RACE)技术,获得了1条MADS—box基因家族的基因,命名为BoAP3。序列分析结果表明:BoAP3开放阅读框(open reading frame,ORF)长度为654bp,编码218个氨基酸,具有典型的植物MADS—box蛋白结构,其编码肽链包含了MADS区、K区、I区和C区。B胡丹与小麦Triticum aestivum,水稻Oryzasatva等AP3-like同源基因所编码的氨基酸同源性达到80%以上。定量聚合酶链式反应(PCR)结果表明:BoAP3基因在开花试管苗的花芽中表达量是不开花试管苗营养芽表达量的8.1倍,表明该基因可能参与了花器官的发育。  相似文献   

8.
利用RT-PCR、RACE及克隆等方法获得了异育银鲫促甲状腺激素β亚基(TSHβ)基因全长cDNA序列。该cDNA全长926 bp,5’端非编码区68 bp;3’端非编码区372 bp;开放阅读框(ORF)486 bp,编码161个氨基酸。经序列分析显示,其编码的氨基酸序列与金鱼[Carassius auratus(goldfish)]、鲤(Cyprinus carpio)、鳙(Aristichthysnobilis)、斑马鱼(Danio rerio)、虹鳟(Salmo gaidnerii)、鲑(Salmo salar)、鳗鲡(Anguilla anguilla)具有较高的相似性,其相似性分别为91.3%、87.6%、83.2%、77%、58.6%、56.1%、43.55%,同源性较高,这说明TSHβ亚基在长期的进化中具有较高保守性。而且在比较中还发现:异育银鲫和其它7种鱼类相比在5’端多11个氨基酸序列,并且都含有定位保守的12个半胱氨酸残基和一个N糖基化位点。  相似文献   

9.
异育银鲫促甲状腺激素β亚基基因的克隆及序列分析   总被引:2,自引:1,他引:2  
利用RT-PCR、RACE及克隆等方法获得了异育银鲫促甲状腺激素β亚基(TSHβ)基因全长cDNA序列。该cDNA全长926 bp,5’端非编码区68 bp;3’端非编码区372 bp;开放阅读框(ORF)486 bp,编码161个氨基酸。经序列分析显示,其编码的氨基酸序列与金鱼[Carassius auratus(goldfish)]、鲤(Cyprinus carpio)、鳙(Aristichthysnobilis)、斑马鱼(Danio rerio)、虹鳟(Salmo gaidnerii)、鲑(Salmo salar)、鳗鲡(Anguilla anguilla)具有较高的相似性,其相似性分别为91.3%、87.6%、83.2%、77%、58.6%、56.1%、43.55%,同源性较高,这说明TSHβ亚基在长期的进化中具有较高保守性。而且在比较中还发现:异育银鲫和其它7种鱼类相比在5’端多11个氨基酸序列,并且都含有定位保守的12个半胱氨酸残基和一个N糖基化位点。  相似文献   

10.
[目的]获取鲤鱼全长IL-10(interleukin 10)cDNA,并对其序列进行分析。[方法]利用DD-RTPCR(differential display RT-PCR)方法获得差异表达IL-10cDNA片段,以地高辛标记做为探针,对有丝分裂原刺激的鲤鱼外周血白细胞cDNA文库进行核酸杂交筛选,克隆鲤鱼IL-10全长cDNA,并对该序列进行序列分析和同源性比较。[结果]鲤鱼全长IL-10cDNA共1117bp,包含55bp的5’端非编码区,一个540bp的编码179个氨基酸的开放阅读框及522bp的3’端非编码区。其中,3’非编码区包含3个mRNA不稳定基序"ATTTA";该蛋白序列具有IL-10家族的典型序列特征;序列同源性比较表明,所获得的序列与GenBank上登录的鲤鱼IL-10基因同源性为89.1%。[结论]该试验为进一步研究IL-10在体内的表达方式、功能特点、调控机理及其在炎症反应和免疫应答中的作用机制奠定了基础。  相似文献   

11.
黄瓜L-半乳糖-1,4-内酯脱氢酶cDNA全长的克隆和遗传转化   总被引:1,自引:0,他引:1  
以黄瓜D08108果实为材料,根据GenBank中登录的甜瓜L-半乳糖-1,4-内酯脱氢酶(GalLDH)的序列设计引物,采用RT-PCR方法扩增出黄瓜GalLDH的cDNA全长,GenBank登录号为 HQ446099.黄瓜GalLDH的cDNA序列全长1880 bp,包含一个长为1773 bp的完整开放阅读框,编码590个氨基酸.其核苷酸序列与已知其他植物核苷酸序列间的同源性达70%以上.共检测得到5棵转基因植株  相似文献   

12.
[目的]克隆黄瓜(Cucumis sativusL.)水苏糖合成酶(STS)基因全长cDNA,为深入研究黄瓜同化物运输机理奠定基础。[方法]以黄瓜品种津研4号成熟叶片为材料,采用RT-PCR结合RACE技术,克隆得到3个黄瓜水苏糖合成酶全长cDNA。[结果]3序列(Gen-Bank登录号分别为:EU096496、EU096497、EU096498)长度分别为3 016、3 081、3 153 bp,编码相同的846个氨基酸。序列分析结果表明,黄瓜STS与其他高等植物的STS具有较高的同源性。[结论]3个cDNA序列的差异主要表现在3′非翻译区长度不等,推测可能由同一基因经3′非翻译区可变剪接生成。  相似文献   

13.
采用RACE(rapid-amplification of cDNA ends)方法从黄瓜Cucumis sativusL.中克隆出质膜Na+/H+逆向转运蛋白基因的cDNA(CsSOS1),该cDNA全长3 638bp,其中开放阅读框为3 435bp,编码1 145个氨基酸。氨基酸同源性分析表明,CsSOS1氨基酸序列与水稻OsSOS1和拟南芥AtSOS1的氨基酸序列同源性较高,分别为64%和58%,而与液泡型的Na+/H+逆向转运蛋白氨基酸序列亲缘关系较远。蛋白质跨膜结构分析表明CsSOS1包含11个完全跨膜片段。激光共聚焦显微镜显示CsSOS1基因的编码区与YFP基因融合后,定位在细胞膜上。酵母功能互补试验结果显示CsSOS1参与Na+与H+的转运,表明该基因转化酵母后可以补充酵母SOS1的缺失。  相似文献   

14.
Na+/H+逆向运输蛋白基因在植物耐盐性方面起着极为重要的作用。根据同源基因保守序列设计引物,通过RACE方法从甜瓜中克隆了Na+/H+逆向转运蛋白基因,命名为CmNHX1(FJ843078)。序列分析表明,该基因全长2 534bp,开放读码框为1 659bp,编码553个氨基酸多肽。氨基酸同源性分析表明该蛋白与液泡型Na+/H+逆向转运蛋白的亲缘关系较近,与质膜型Na+/H+逆向转运蛋白的亲缘关系较远。RT-PCR表达分析结果表明,CmNHX1在甜瓜根茎叶中均有表达,而且随着NaCl浓度和处理时间的增加,在根中表达持续增强,叶片中表达持续下降。耐盐品种‘金辉’根、茎和叶中的CmNHX1表达均高于盐敏感品种‘天仙’根、茎和叶中的表达。有趣的是在根中的表达,CmNHX1相对表达量在‘金辉’中是‘天仙’的2倍。CmNHX1在盐敏感酵母突变体中表达可以提高转化子对NaCl的耐受性,说明CmNHX1具有转运Na+的功能。研究结果表明CmNHX1是一个液泡膜Na+/H+逆向转运蛋白,在甜瓜盐胁迫过程中起着重要作用。  相似文献   

15.
采用同源克隆方法,并结合RACE技术,从甜荞花芽分离得到1个A类MADS-box基因FeMADS1的cDNA全长,GenBank登录号为KM386627,其cDNA全长1 107bp,包括1个编码234个氨基酸、长为705bp的开放阅读框。序列同源比对和分子系统发生分析表明,其蛋白与拟南芥AGL8(FUL)的相似性最高,属A类MADS-box基因亚家族中的euFUL进化系,含MADS、I、K和C末端4个明显的结构域,并且K结构域包含K1、K2和K3共3个保守的富含疏水氨基酸残基的亚结构域,C末端结构域含FUL型基因2个特有的模体:FUL motif和paleoAP1motfi。  相似文献   

16.
采用RT-PCR和RACE方法,从鸭梨(Pyrus bretschneideri Rehd)果实中获得过氧化物酶(Peroxidase)基因POD的cDNA全长,命名为PbPOD,并将该基因在GenBank上登录,登录号为JQ325052。基因序列分析表明,该基因的cDNA全长为1 487 bp,包含72 bp的5'非翻译区、404 bp的3'非翻译区和长度为1 011 bp且编码336个氨基酸的编码区(CDS)。氨基酸序列分析表明,该基因编码的蛋白具有POD家族保守存在的所有功能活性位点,且与甜瓜、拟南芥、烟草等植物POD相似性达92%以上。  相似文献   

17.
采用RT-PCR、5'RACE和3'RACE方法,克隆得到了不结球白菜NJ074晚抽薹基因(BcFLC1)的cDNA全长序列。对BcFLC1基因所编码氨基酸序列的理化性质进行分析推测得到:该基因cDNA全长909bp,包含576bp的开放阅读框,编码191个氨基酸。不结球白菜BcFLC1蛋白功能域预测分析结果表明:该基因为MADS盒基因,其编码蛋白的1~60氨基酸属于MADS盒基因蛋白。荧光定量PCR分析表明:BcFLC1基因在不同生长发育阶段叶片中的表达情况不同,抽薹前高于抽薹后叶片中的表达量。BcFLC1基因在不同部位表达也存在差异,表达量从高到低依次为:叶、茎、花蕾、花和根。  相似文献   

18.
【目的】从番荔枝中分离花器官特征决定基因AGAMOUS,并进行亚细胞定位及基因表达分析,为进一步研究该基因参与调控花发育调控的分子机理,及解决番荔枝花发育异常问题奠定基础。【方法】以番荔枝成熟花为材料,通过试剂盒提取总RNA,并以RACE方法克隆获得基因AG的全长序列。序列拼接和氨基酸序列分析采用DNAMAN软件;相似性分析通过BLASTn和BLASTp程序进行;进化树构建采用MEGA 5.1软件;蛋白质二级结构预测与3D结构建模分别采用ExPaSy的SOPMA和Phyre2程序进行;亚细胞定位表达采用烟草上皮细胞瞬时转染系统和基因枪轰击洋葱表皮细胞方法;AG在花发育不同时期、不同器官及不同激素信号分子处理下的表达特性分析,利用实时荧光定量RT-PCR方法。【结果】从番荔枝中克隆得到AGAMOUS,其cDNA全长ORF序列长度为669 bp,编码222个氨基酸,命名为AsAG,序列提交到GenBank(登录号为KT159768)。二级结构预测发现AsAG所编码蛋白由延伸链结构(俄extended strand)、α-螺旋(alpha helix)、β-转角(beta turn)和不规则卷曲(random coil)组成,四者比例分别为14.41%、59.46%、8.11%和18.02%。生物信息学分析显示AsAG编码的蛋白与海枣(XP 008781978.1)、芦笋(BAD83772.1)、拟南芥(AT4G18960)、油棕(XP 010912706.1)、山玉兰(AFH74390.1)、石斛(ABQ08574.1)、红花玉兰(AEO52692.1)等同源蛋白的相似度达79%-84%。ASAG蛋白含有一个高度保守的MADS-box结构域和一个次级保守的K区,该蛋白分子量为25.7 kDa,等电点为9.15,为稳定蛋白,无信号肽。亚细胞定位显示AsAG编码蛋白定位于细胞核。实时定量RT-PCR结果表明,AsAG在不同的器官中表达量存在差异,在花中表达量最高。AsAG在番荔枝花发育的整个过程中都有表达,而在花蕾期Ⅳ中表达量最高。进一步分析发现AsAG的表达水平呈现花器官特异性分布(雄蕊>雌蕊>萼片>花瓣)。进一步研究表明,AsAG在畸形花中的表达量低于正常花。检测GA和ABA等不同信号分子分别处理番荔枝花芽2 h和4 h后AsAG的表达量,结果表明AsAG的表达受GA负调控,受ABA正调控。【结论】推测番荔枝AsAG可能参与雌蕊和雄蕊的发育及激素信号的响应。  相似文献   

19.
[目的]为了对荔枝果皮中克隆的APX基因进行cDNA序列分析。[方法]采用RT-PCR和RACE技术从荔枝果皮中扩增克隆抗坏血酸过氧化物酶基因,利用NCBI的ORFFinder程序分析克隆基因的序列,然后将ORF转换成氨基酸序列,进行BLASTX和BLASTN分析,最后用dnasismax2.6pro软件将荔枝与胡瓜、加杨等8种植物进行APX氨基酸序列配比和进化树分析。[结果]该基因cDNA全长1118bp,含有645bp的ORF,编码214个氨基酸。它编码的氨基酸序列与胡瓜、加杨、龙眼、落花生、豌豆、芸苔、帕拉港橡胶树和紫花苜蓿编码的氨基酸序列的同源性分别为83%、89%、97%、78%、84%、75%、79%和85%。推测该蛋白的分子式为C1946H3249N645O827S142,相对分子质量为53466.5,等电点为5.16,理论推导半衰期大于10h。[结论]该基因的克隆与cDNA序列分析为采后荔枝果皮中抗坏血酸过氧化物酶的基因工程操作奠定了基础。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号