首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
采用10条ISSR引物对我国珍稀濒危植物珙桐的6个天然居群和2个人工居群的229份材料进行分析,共检测到127个分子量在200~2 000 bp之间的位点,其中多态性位点119个、多态位点百分率93.81%;各居群多态位点百分率在40.21%~76.29%之间,平均为58.64%。物种水平上,珙桐的Nei’s基因多样性Hs=0.3013,Shannon’s遗传多样性信息指数I=0.4566。居群水平上,各居群的Nei’s基因多样性介于0.1491~0.2690之间,各居群的平均Nei’s基因多样性Hs=0.2191,各居群的Shannon’s遗传多样性信息指数(I)介于0.2200~0.4028之间,平均Shannon’s遗传多样性信息指数I=0.3232。居群间基因间分化度(Gst)为26.27%,基因流Nm为1.4。结果显示珙桐的遗传多样性较高,8个居群间存在一定的遗传分化和基因流动,但遗传分化主要存在于居群内。  相似文献   

2.
柴松遗传多样性的RAPD分析   总被引:1,自引:0,他引:1  
以柴松现存2个居群各50个个体为样本,利用随机扩增多态DNA(RAPD)标记研究了其遗传多样性。50条引物共扩增出349个位点,其中多态位点为321个。用POPGEN32版软件对数据进行了分析,结果表明:(1)柴松的遗传多样性水平很高。在物种水平上,多态位点百分率(PPB)为92.51%,Nei’s基因多样度指数(H)为0.317 3,Shannon多样性信息指数(I)为0.478 2,总基因多样度(Ht)为0.317 4。在居群水平上,平均多态位点百分率为89.92%,H和I平均值分别为0.302 5和0.456 6;(2)居群间的遗传分化较低。居群间遗传分化系数(Gst)为0.046 7,基因流(Nm)为10.201 8,Shannon’s居群分化系数((Isp-Ipop)/Isp)为0.045 2。表明柴松的遗传变异主要存在于居群内,占总变异的95%以上,居群间的遗传变异不足5%。并根据柴松的遗传多样性现状提出了相应的保护策略和措施。  相似文献   

3.
以收集的8个绢毛蔷薇居群的80份样本为研究对象,利用SSR技术分析其遗传多样性.80个样本的多态位点百分率、Nei's基因多样性指数(H)和Shannon信息指数(I)分别为69.66%、0.1425、0.2296.比较8个居群的遗传多样性指标,显示居群间遗传变异55.53%,居群内遗传变异44.47%.茂林居群的遗传多样性最高(H=0.0879,I=0.1331,多态位点百分率为25.84%).聚类分析结果显示,8个居群可聚类为2组.居群遗传分化系数(Gst)和基因流(Nm)分别为0.5553和0.4005,表明绢毛蔷薇基因分化明显,基因交流受阻.  相似文献   

4.
羽毛针禾种群遗传多样性分析   总被引:1,自引:0,他引:1  
张玲  王绍明  张霞  徐海雷  陆嘉惠 《安徽农业科学》2011,39(21):12643-12645
[目的]从分子水平对羽毛针禾居群内、居群间的遗传分化进行研究,揭示其遗传多样性水平。[方法]使用11条RAPD引物对生长于古尔班通古特沙漠的优良固沙植物羽毛针禾进行居群遗传变异分析。[结果]7个居群76个样品共检测到125个位点,总多态位点百分比为96.8%,居群内平均多态位点百分比为45.3%;羽毛针禾种群Shannon表型多样性指数(I)为0.5151,Nei’s基因多样度指数(h)为0.3471;居群间的基因分化系数为0.5284,即有52.84%的遗传多样性存在于居群间。[结论]羽毛针禾居群有较为丰富的遗传变异,且各居群间已有了明显分化。  相似文献   

5.
运用SRAP分子标记研究了山东省3个钩齿溲疏居群的遗传多样性,结果显示,用15对引物共检测到244个位点,其中多态位点167个,物种水平多态位点百分率(PPL)68.44%,Nei’s基因多样性指数(H)0.2158,Shannon’s信息指数(I)0.3282,数据表明钩齿溲疏有较高的遗传多样性水平;居群间遗传分化系数(Gst)为0.3685,表明居群间遗传变异只占36.85%,远低于居群内遗传分化;在居群水平上,以崂山钩齿溲疏居群的遗传多样性最高,徂徕山最低;居群间遗传一致度(GI)和遗传距离(GD)变化范围分别为0.8350~0.8884和0.1184~0.1803,居群间的遗传距离与地理位置间没有直接相关性。  相似文献   

6.
通直型巨龙竹不同地理种源遗传分化的ISSR分析   总被引:4,自引:0,他引:4  
通直型巨龙竹Dendrocalamus sinicus是云南重要的经济竹种资源之一。为了保护和开发通直型巨龙竹种质资源.应用简单序列重复区间扩增(ISSR)标记对通直型巨龙竹核心分布区不同地理种源的遗传变异进行了研究。从80个引物中筛选出7个用于正式扩增,在所研究的4个居群共54个个体中检测到54个多态位点。在居群水平上。多态位点百分率为9.59%,Nei’s基因多样性指数(H)和Shannon信息指数(I)分别为0.0363和0.0536:在物种水平上,多态位点百分率为73.97%,H和I分别为0.2600和0.3921。居群间的遗传分化系数(Ga)达0.8634,显示不同居群间遗传分化很大。造成通直型巨龙竹不同地理种源遗传分化的主要原因可能是生境片断化和自然条件下花而不实造成的种子传播困难.图4表4参21  相似文献   

7.
采用ISSR分子标记技术,对珙桐6个种群和光叶珙桐1个种群共117份样品进行遗传多样性分析.结果表明:用12条引物对117份样品进行扩增,共检测扩增位点199个,其中多态性位点177个.在物种水平上,多态性位点百分率(PPL)为88.94%,Neis基因多样性(H)为0.278 4,shannon信息指数(I)为0.418 7.种群水平的多态性相对较低,多态百分率在35.18%~48.74%之间,Neis基因多样性(H)为0.126 0~0.179 5,shannon信息指数(I)为0.188 1~0.265 1.基于Neis遗传多样性分析得出的种群间遗传分化系数(Gst)为0.474 5,表明有47.45%的遗传变异存在于种群间,而种群内的遗传变异占总变异的52.55%,种群间基因流(Nm)为0.553 7.Mantel检测显示,种群间的遗传距离和地理距离之间不存在显著的相关性.  相似文献   

8.
山核桃天然群体遗传结构的RAPD分析   总被引:2,自引:0,他引:2  
利用随机扩增多态性DNA(RAPD)分子标记技术,分析了山核桃5个天然居群150个个体的遗传多样性和遗传结构,20条10bp的随机引物共扩增出252个位点,其中,多态性位点168个,多态位点百分率(PPB)为66.7%。居群水平Shannon’S多态性信息指数(I)在0.1992~0.2800间变化,物种水平,为0.4102;居群水平Nei’s基因多样性指数(H)介于0.1297~0.2051之间,物种水平H为0.2671。遗传变异计算显示,山核桃居群间基因分化系数(Gst)为0.3845。分子方差分析(AMOVA)表明,居群间基因分化系数为0.3413,大部分变异存在于居群内。居群间基因流(Nm)为0.9671,说明居群间基因交流相对较少。这一结果符合山核桃风媒、异交的繁育系统特点,但其居群间基因分化系数比异交植物的平均水平高。提示:地理隔离、居群内近交及居群间有限的基因流可能是形成目前山核桃天然群体遗传结构的主要因素。  相似文献   

9.
新疆核桃种质资源遗传多样性的ISSR分析   总被引:2,自引:0,他引:2  
李超  罗淑萍  曾斌  李疆  李刚 《中国农业科学》2011,44(9):1871-1879
[目的]通过ISSR标记技术,对新疆核桃种质资源的遗传多样性及遗传结构进行分析,为该资源的保护与利用提供理论依据和技术支持.[方法]采用ISSR标记对5个居群和1个栽培类型共163份样品进行遗传多样性分析.[结果]用13条引物对163份样品进行扩增,共检测扩增位点117个,其中多态性位点98个.在物种水平上,多态性位点百分率(PPL)为83.76%,Nei's基因多样性(H)为0.3010,Shannon信息指数(Ⅰ)为0.4182;在居群水平上,多态性位点百分率平均为68.36%,Nei's基因多样性(H)平均为0.1 265,Shannon信息指数(Ⅰ)平均为0.1651.基于Nei's遗传多样性分析得出的居群间遗传分化系数(Gst)为0.6425,表明有64.25%的遗传变异存在于居群间.居群间的遗传一致度平均为0.7499,估测的居群问基因流(Nm)为0.2782,表明核桃采集的6个居群或类型之间存在较小的基因流.AMOVA方差分析也表明居群间的核桃遗传变异大于居群内.Mantel检测与UPGMA聚类均表明居群间的遗传距离与居群的地理距离之间具有较高的相关性.[结论]新疆核桃遗传多样性水平较高,居群之间遗传分化大,种质资源保护和利用策略首选就地保护;在就地保护过程中,通过监测遗传多样性水平可评价其保护的有效性.  相似文献   

10.
浙江仙居长叶榧自然居群遗传多样性的ISSR分析   总被引:5,自引:0,他引:5  
采用ISSR分子标记技术,对中国特有树种长叶榧的遗传多样性和遗传分化进行分析.用10个引物对浙江省仙居县的5个长叶榧居群共100个样品进行扩增,共测到136个位点,其中多态位点72个,多态位点百分率(P)为52.97%.长叶榧总的Shannon信息指数(I)为0.269 1,Nei指数(h)为0.175 8,表明种水平的遗传多样性较高,而居群水平的遗传多样性较低,P平均为28.09%,I平均为0.138 9,h平均为0.091 2.AMOVA分子差异分析表明长叶榧居群间遗传分化程度高,45.72%的变异存在于居群间,54.28%的变异存在于居群内,居群间的基因分化系数(Gst)为0.489 1.长叶榧居群间的基因流很低,为0.522 4.瓶颈效应、居群隔离和遗传漂变可能是造成长叶榧居群低遗传多样性和居群间较高遗传分化的主要原因.5个居群间的平均遗传距离为0.128 0.利用算权平均数法(UPGMA)对长叶榧居群进行聚类,结果可分为两大类群:下辽和龙潭坑2个居群组成一个类群;石舍与石长坑居群先聚在一起,再与夹坟坑居群组成另一个类群.   相似文献   

11.
米心水青冈遗传多样性研究   总被引:1,自引:0,他引:1  
采用RAPD分子标记技术分析9个自然居群米心水青冈的遗传关系和多样性。20条随机引物共扩出260个条带,平均每条引物扩增出13个条带,其DNA带的分子量在200~3000 bp。其中多态性条带有180条,多态位点比率(PPL)为69.2%。种内Shannon多样性指数为0.302 1,群体内所占比例为72.10%,群体间所占比例为27.90%。种内Nei’s基因多样性为0.204 5,群体内平均基因多样性为0.150 2,基因分化系数GST为0.263 1。米心水青冈的遗传多样性水平处于中等,遗传分化也处于中等水平。  相似文献   

12.
野生银杏资源群体遗传多样性的RAPD分析   总被引:2,自引:1,他引:1  
用随机扩增多态DNA(RAPD)技术对浙江西天目山、贵州务川、湖北大洪山区、重庆金佛山区和福建武夷山区等5个群体150个银杏Ginkgo biloba个体进行了遗传多样性分析。12个寡核苷酸引物共检测到194个位点,多态位点130个,多态位点百分率66.67%。用PopGen 32软件对数据进行了分析,结果显示:Nei’s基因多样性指数(h)的群体水平是0.4317,Shannon信息指数(I)的群体水平是0.6211,基因分化系数(Gst)是0.2882。Shannon信息指数(I)分析揭示的银杏群体遗传分化水平[(Isp-Ipop)/Isp]=0.1903,AMOVA分析结果得出银杏群体间的分化占36.7%。RAPD数据显示.5个银杏群体遗传多样性较高,其中浙江西天目山、贵州务川和湖北大洪山区有可能是野生银杏冰川期避难所。图4表5参22  相似文献   

13.
濒危植物白桂木的遗传多样性研究   总被引:1,自引:0,他引:1  
利用随机扩增多态DNA(RAPD)分子标记技术对濒危植物白桂木Artocarpus hypargyreus 5个天然种群进行遗传多样性分析。结果表明:白桂木种群具有较高的遗传多样性,总的多态位点频率为81.08%,平均Shannon指数为0.231 9,Nei指数为0.166 0,种群的遗传分化系数(GST)为0.737 8,基因流(Nm)为0.125 1。说明白桂木种群间的基因流受限严重,其遗传变异有73.78%存在于种群间,只有26.22%发生于种群内。图4表4参21  相似文献   

14.
山蜡梅复合体的遗传多样性和居群遗传分化研究   总被引:1,自引:0,他引:1  
将山蜡梅、浙江蜡梅、突托蜡梅统称为山蜡梅复合体,应用RAPD和ISSR标记分别对来自7个不同居群共201个山蜡梅复合体单株进行DNA多样性检验。结果显示:从38个ISSR引物中筛选出12个条带清晰、重现性好、多态性高的引物,扩增出总条带数142条,大小在300~2800bp,多态率达94.37%,PIC0.31,MI3.33。在80个RAPD引物中,选出了12条合适的引物,扩增出条带数226条,大小在150~2200bp,多态率达95.13%,PIC0.37,MI4.91。两种分子标记计算出山蜡梅复合体居群的Nei’s基因多样性指数为0.2952,Shannon信息指数为0.4884,反映出山蜡梅复合体丰富的遗传多样性。进一步的AMOVA分析显示,山蜡梅复合体遗传变异大部分来自居群内变异,并且都达到极显著水平,这表明7个地理居群间存在着比较明显的遗传分化。UPMGA聚类分析发现,7个山蜡梅复合体居群被归为明显的3大支,且地理距离相邻的居群遗传距离也近,说明居群的聚类和地理距离有关。同时分析结果还为解决存在争议的新种的分类工作提供分子水平的有力证据。  相似文献   

15.
大娄山区巴山榧树遗传多样性的RAPD分析   总被引:2,自引:0,他引:2  
利用RAPD技术对大娄山地区3个居群29个巴山榧树个体进行了遗传多样性分析.结果表明:12个10bp寡核苷酸引物共检测到81个位点,其中多态性位点61个.在物种水平上,大娄山区巴山榧树的多态性位点百分率为75.31%,Nei's基因多样性指数为0.2437,Shannon's信息指数为0.3703;而在居群水平上,遗传...  相似文献   

16.
为研究浙江省温州水牛的遗传多样性,采用ISSR分子标记技术,分析了采自浙江平阳、瑞安、永嘉、乐清、温州等地温州水牛血液样本。从22条引物中筛选出9条多态性引物,9条ISSR引物共获得ISSR位点186个,其中多态性位点154个,多态位点百分率(PPL) 为82.80%,等位基因数(Na)为1.8420,有效等位基因数(Ne)为1.5702,Neis基因多样性(H)为0.3108,Shannons指数(I)为0.4687,均高于个体水平;种群内和种群间Neis基因多样性计算遗传分化水平(Gst)为0.1840,表明温州水牛种群间存在着较高的遗传多样性,遗传变异中有1840%发生于群体间。UPGMA聚类分析结果同样也表明温州水牛种群间的遗传分化水平较低,遗传变异主要存在于种群的个体间。  相似文献   

17.
河南和河北冬小麦区假禾谷镰孢的遗传多样性   总被引:7,自引:0,他引:7  
【目的】运用ISSR-PCR技术揭示中国河南和河北省冬小麦区6个地理群体小麦茎基腐病优势病原菌假禾谷镰孢(Fusarium pseudograminearum)的遗传多样性。【方法】利用筛选的17个ISSR引物对从河南和河北冬小麦区收集的166株假禾谷镰孢菌株进行扩增。根据群体扩增的结果,用POPGENE version l.32软件计算各项遗传多样性参数。根据不同地理群体的遗传相似系数,用NTSYSpc version 2.11软件进行群体聚类分析。【结果】从97个ISSR引物中筛选出了17个多态性较好的引物,用这17个引物对河南和河北冬小麦区的166株假禾谷镰孢菌株进行扩增,共扩增出234个DNA片段,其中多态性位点为218个,占总扩增片段的93.16%。平均每个引物可以扩增出13.76个条带,扩增产物大小在150-2 500 bp。POPGENE分析表明,6个地理群体的多态位点数在58-208,平均为124;多态位点百分率在24.79%-88.89%,平均为52.92%;有效等位基因数在1.1548-1.3293,平均为1.2584。遗传多样性分析表明,在地理种群水平上,Nei’s基因多样性指数在0.0897-0.2069,平均为0.1548;Shannon’s信息指数在0.1337-0.3257,平均为0.2368,这表明不同地理群体间存在一定的遗传变异。河南北部地区的Shannon’s信息指数和Nei’s基因多样性指数最高,表明该地区假禾谷镰孢菌株之间的遗传多样性最丰富。河南南部地区的Shannon’s信息指数和Nei’s基因多样性指数最低,表明该地区假禾谷镰孢菌株之间的遗传多样性最低。遗传相似性分析证明,河南北部地区假禾谷镰孢种群和河南东部地区种群最近,河南南部地区假禾谷镰孢种群和河南东部地区种群最远。6个地理群体间的遗传分化系数Gst为0.1571,群体内为0.8429,群体内多样性大于群体间的多样性。6个地理群体间的基因流Nm为2.6819,说明不同地理群体假禾谷镰孢菌株间存在较大的基因流动。6个地理群体总基因多样度Ht为0.1837,各地理群体内基因多样度Hs为0.1548,地理群体间基因多样度Dst为0.0289,这说明相同地理来源的菌株有具有较近的亲缘关系。在遗传相似系数为0.966时,可将6个地理群体划分为2个不同的类群。第Ⅰ类群包括河南北部、河南东部、河南中部、河北中部和河南西部地区,河南南部地区属于第II类群。【结论】河南和河北冬小麦区小麦茎基腐病假禾谷镰孢6个地理群体之间的遗传分化与其地理来源之间有一定的相关性,群体内多样性大于群体间,不同地理群体假禾谷镰孢菌株间存在较大的基因流动。  相似文献   

18.
该文利用ISSR技术分析了大兴安岭北段4个不同海拔梯度、3个不同群落及3个纬度梯度的樟子松天然林群体的遗传多样性及遗传分化.16个筛选出的随机引物在3组共240株个体中,分别检测出162、156和169个多态位点,总多态位点的百分率分别达到85.26%、82.11%和88.95%,樟子松天然林群体具有较高的遗传多样性.在海拔、群落和纬度等不同的尺度上,樟子松天然林群体间的遗传变异较低,遗传变异多来自群体内部.海拔及纬度因子显著影响樟子松天然林群体的遗传多样性水平,不同群落类型对群体的遗传多样性影响不大.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号