首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
  目的  考察生物质炭及铁改性生物质炭对土壤吸附砷[As(Ⅴ)]的影响。  方法  以法国梧桐Platanus orientalis修剪枝为原料在650 ℃限氧条件下热解制备生物质炭,并通过氯化铁(FeCl3)溶液浸渍、热解,将其进一步制备成铁改性生物质炭,对比考察改性后生物质炭理化性质和表面官能团的变化;并通过批量吸附试验探究不同As (Ⅴ)初始质量浓度、吸附时间对施炭土壤吸附As (Ⅴ)效果和规律的影响,通过分析吸附等温线特征和吸附动力学特征,探明吸附机制。  结果  铁改性生物质炭较原始生物质炭pH、比表面积及官能团数量降低,但灰分质量分数和电导率有所增加;Langmuir模型能较好拟合施炭土壤对As(Ⅴ)的吸附过程,表明吸附以单分子层为主。当As (Ⅴ)溶液初始质量浓度大于25 mg·L?1后,铁改性生物质炭对As (Ⅴ)的吸附量大于原始生物质炭,且最大吸附量为0.36 mg·g?1。原始生物质炭和铁改性生物质炭对As (Ⅴ)的动力学吸附符合准二级动力学方程,吸附过程在4 h前后分别为快速吸附和慢速吸附2个阶段,在24 h左右趋于平衡,且铁改性生物质炭处理下土壤的饱和吸附量比原始生物质炭处理高11%。  结论  施用2种生物质炭均能提高土壤对As (Ⅴ)的吸附效果,且铁改性生物质炭的吸附效果优于原始生物质炭。因此,施用铁改性生物质炭可以加强土壤对As (Ⅴ)的吸附作用从而降低As生物有效性。图6表3参39  相似文献   

2.
镉砷污染土壤钝化剂配方优化及效果研究   总被引:3,自引:3,他引:0  
为筛选出适宜镉砷污染土壤的复合钝化剂,采用D-最优混料设计方法,研究铁改性生物炭、酸改性海泡石和酸改性蛭石钝化土壤Cd和As的最优复配配方。结果表明:经FeCl3改性后的生物炭对As的吸附能力增加,对Cd的吸附能力降低;经酸改性后的海泡石和蛭石对Cd的吸附能力不变,对As的吸附能力增强。铁改性生物炭、酸改性海泡石和酸改性蛭石复配能有效降低土壤有效态Cd和As含量,活性态Cd主要向残渣态转化,活性态As主要向有机结合态和残渣态转化,Cd和As生物有效性降低。采用Design Expert统计软件分析数据,通过建立回归方程及多目标优化分析,获得复配钝化剂的配比为铁改性生物炭26.97%、酸改性海泡石23.49%和酸改性蛭石49.54%,经验证实验,施用优化配方后的土壤有效态Cd和As含量分别为0.97 mg·kg-1和0.26 mg·kg-1,与预测值接近。研究表明,铁改性生物炭、酸改性海泡石和酸改性蛭石复配能有效降低土壤Cd和As的生物有效性。  相似文献   

3.
本研究以园林绿化废弃物刺桐为原料,在不同的热解温度下(300、500、700 ℃)制备生物炭,用动力学方程和等温吸附方程分别拟合生物炭对氨氮和磷的吸附性能。等温吸附方程拟合结果表明:生物炭对水中氨氮和磷的吸附量均随着氨氮和磷的初始浓度的增加而增大,且均能较好地拟合Langmuir吸附方程,且BC500吸附效果最好;动力学方程拟合结果表明:不同热解温度下得到的生物炭对氨氮和磷的吸附速率较快的过程分别发生在最初的300 min和60 min内,且均能较好地拟合准二级动力学方程;此外,生物炭对不同初始pH下对氨氮和磷溶液的吸附效果分别为pH7 > pH11 > pH3和pH11 > pH7 > pH3。  相似文献   

4.
玉米生物炭和改性炭对土壤无机氮磷淋失影响的研究   总被引:5,自引:2,他引:3  
利用玉米秸秆为原料制作生物炭,并用氯化铁进行改性,考察了改性前后生物炭对硝态氮和磷的吸附等温和吸附动力学过程,将生物炭和改性炭制作3 cm厚的物理隔离层,施入土柱50 cm处,通过淋溶实验,研究生物炭改性前后对土壤无机氮磷淋失的影响。结果表明,炭化温度为500℃时,铁炭比为0.7的生物炭和改性炭对氮磷的吸附能力最强。吸附动力学和等温吸附曲线分析表明:生物炭改性后对硝态氮和磷的吸附增大,生物炭和改性生物炭对硝态氮的最大吸附量分别为0 mg·g-1和2.414 mg·g-1、对磷的最大吸附量分别为1.723 mg·g-1和16.062 mg·g-1。与对照相比,生物炭处理和改性炭处理硝态氮的淋失量分别降低11.2%和31.6%,磷的淋失量分别显著降低33.1%和82.9%,氨氮的淋失量分别显著降低44.3%和68.6%。淋溶试验后对土壤残留养分分析表明,隔离层的添加并不会对0~50 cm土层内NO-3-N、NH+4-N和PO3-4-P含量产生明显影响,同时改性生物炭能有效减少NH+4-N和PO3-4-P向更深土层中迁移,表明土壤中添加改性生物炭能够有效降低土壤无机氮磷的淋失风险。  相似文献   

5.
采用五步连续提取法研究了2种生物炭对复合污染土壤中Cu、Pb、Zn和Cd的化学提取态的影响。结果表明,施加2种生物炭后,土壤中4种重金属生物有效态的含量均下降。对照处理中4种重金属主要以残渣态的形式存在,其中Zn、Pb、Cd和Cu所占的比例分别为79.0%、77.5%、75.0%和63.0%。施加猪粪生物炭后,Zn、Pb和Cd水溶态与交换态占总含量的比例下降,Pb、Cu和Cd的残渣态所占比例增加。施加稻壳生物炭后,Pb和Cd的残渣态所占比例增加,碳酸盐结合态、铁锰氧化物结合态、水溶态与交换态比例均下降;Zn和Cu的碳酸盐结合态比例下降,残渣态比例增加。添加猪粪生物炭和稻壳生物炭后Pb、Cu的残渣态比例分别增加了8.4%、5.8%和7.9%、9.5%;表明添加2种生物炭可以降低Pb、Cu的有效性,但比例相差不大。  相似文献   

6.
改性芦苇生物质炭对水中硝态氮的吸附特性   总被引:1,自引:0,他引:1  
以芦苇为研究对象,采用负载铁盐的方法制备新型铁改性生物质炭,用于水体中硝态氮的去除。结合扫描电镜和红外光谱分析对芦苇生物质炭进行表征,探究不同改性方法、铁炭比、芦苇生物质炭投加量、pH值和共存离子等因素对芦苇生物质炭吸附硝态氮的影响,分析芦苇生物质炭的吸附动力学与吸附等温线特性。结果表明,超声静置的铁改性芦苇生物质炭记为CS-LWC吸附能力最强,在200 m L初始浓度为20 mg/L硝态氮溶液中投加1. 4 g CSLWC,对氮的去除率为85. 28%;酸性条件有助于铁改性芦苇生物质炭对硝态氮的吸附,而共存阴离子Cl-、H_2PO_4-、CO_32-会抑制其吸附; CS-LWC对水体中硝态氮的吸附过程符合准二级动力学模型,其饱和吸附量为3. 442 mg/g;吸附行为与Langmiur等温模型相符,为单层吸附。  相似文献   

7.
固定化改性生物质炭模拟吸附水体硝态氮潜力研究   总被引:7,自引:3,他引:4  
为了有效去除水体硝态氮污染,对两种生物质炭(花生壳炭、小麦秸秆炭)进行铁改性处理,研究其对硝态氮吸附特性,考察吸附时间、硝态氮初始浓度、p H、生物质炭添加量和共存离子对改性生物质炭吸附效果的影响。在此基础上,为解决粉末态生物质炭易随水流失的问题,对改性生物质炭进行固定化处理,探索固定化改性生物质炭对硝态氮吸附潜力。研究结果表明,改性生物质炭对硝态氮的吸附主要发生在前6 h,并在24 h左右达到吸附平衡,其吸附量随着水溶液中硝态氮浓度的上升而升高,改性花生壳炭和小麦秸秆炭对硝态氮最大吸附潜力分别为2674、1285 mg N·kg-1,且酸性至中性条件有利于改性生物质炭对硝态氮的吸附。在20 mg·L-1的硝态氮溶液中,改性花生壳炭和小麦秸秆炭的适宜固液比分别为10、28 g·L-1,其去除率达到80%。当包埋载体海藻酸钠浓度为2%、改性生物质炭含量为0.1 g·m L-1时,固定化改性生物质炭微球成形完整,对硝态氮具有较强的吸附能力,固定化并未显著降低改性生物质炭的吸附性能。因此,固定化改性生物质炭能有效吸附水体硝态氮,为污水处理厂尾水等低污染水硝态氮去除提供有效的技术方法。  相似文献   

8.
碱活化载镁橘皮生物炭除磷后对土壤的改良作用   总被引:1,自引:0,他引:1  
改性生物炭作为一种新型环保材料常被用于污水吸附除磷,然而吸附除磷后的改性生物炭若不妥善处理可能会对环境造成二次污染。为促进吸附除磷后生物炭的资源化、无害化利用,本研究将吸附除磷后的载镁橘皮生物炭(KMg-BC/P)用于土壤改良及大豆栽培。结果表明:添加适量的KMg-BC/P能显著提高土壤的pH、有机质含量、阳离子交换量、有效磷含量、总磷含量、磷素的释放量以及持水能力;同时增加土壤中高效磷源和缓效磷源的含量,提高土壤碱性磷酸酶活性,促进无机磷和低活性有机磷向高活性有机磷转化;此外其还能促进土壤中细菌的生长繁殖,同时降低真菌的数量和多样性。用KMg-BC/P改良后的土壤种植大豆能促进大豆的生长,使大豆的发芽率、植株高度、根长、叶片数量、大豆植株鲜质量和茎粗均优于对照组。因此,KMg-BC/P具有作为土壤改良剂的潜力。  相似文献   

9.
在对天然海泡石进行铁锰改性并表征的基础上,通过盆栽试验,设3个分别添加0.5%、1.0%和2.5%天然海泡石的处理,3个分别添加0.5%、1.0%和2.5%铁锰改性海泡石的处理和1个空白对照(CK),共7个处理,探究天然海泡石和铁锰改性海泡石对土壤pH、锑(Sb)的形态及Sb在土壤–小白菜中迁移规律的影响。结果表明:海泡石经铁锰改性后呈现孔洞状结构,比表面积增加18.11%,Fe、Mn质量百分比大幅增加,且Fe、Mn以非晶体形式存在;与CK相比,添加天然和铁锰改性海泡石均提高了土壤pH,其中添加2.5%铁锰改性海泡石的影响最大;添加铁锰改性海泡石增加了土壤晶型铁铝结合态Sb和残渣态Sb的百分比,降低土壤非专性吸附态Sb和专性吸附态Sb、无定形铁锰氧化物和非晶型铁铝结合态Sb的百分比,与添加天然海泡石相比,添加铁锰改性海泡石后的土壤非专性吸附态Sb百分比下降了2.48%~43.31%;添加天然和铁锰改性海泡石后,土壤Sb迁移受阻,能显著降低小白菜各部位Sb质量分数和富集系数,根和茎叶Sb的质量分数分别下降6.83%~44.26%、19.51%~59.23%,其中,添加2.5%铁锰改性海泡...  相似文献   

10.
黄蕾  刘伟  杜伟伟 《安徽农业科学》2021,49(21):101-104
以某市公路两侧土壤垂直剖面处重金属Cu、Cr、Zn和Pb为研究对象,探讨其垂直分布特征;运用内梅罗指数评价重金属的污染指数;并根据重金属的形态含量结果分析其对土壤的污染程度;利用SPSS对重金属形态和理化性质进行Pearson相关分析,研究理化性质对重金属形态含量变化的影响.结果表明,剖面重金属含量主要累积在土壤表层,重金属含量随土壤深度的增加呈减少趋势;对剖面土壤产生影响的Zn来自机动车轮胎磨损;Zn以残渣态为主,含量占总量的98.60%,活性态含量较低,占总量的1.40%,对生物有效性和潜在危害性较小;可交换态随土壤pH、阳离子交换量和有机质含量的增加而降低,铁-锰氧化物结合态随土壤pH和阳离子交换量升高而增加,有机物结合态随土壤pH和有机质含量上升而递增,碳酸盐结合态仅随土壤pH增加而增大.  相似文献   

11.
羊栖菜生物炭对镉污染土壤性质及镉形态的影响   总被引:5,自引:4,他引:1  
为了研究生物炭对实际镉(Cd)污染土壤理化性质和Cd化学形态的影响,首先以海洋生物质(羊栖菜)、农林废弃物(水稻秸秆、山核桃壳)为原料制备了三种生物炭,并比较了三种生物炭对水溶液中Cd的吸附效果,从而优选出对Cd吸附最佳的生物炭。通过在Cd污染的土壤中施用不同用量的优选生物炭,测定污染土壤基本理化性质和Cd化学形态的变化,初步探讨了生物炭对实际Cd污染土壤理化性质和土壤Cd污染的钝化效果。结果表明,三种生物炭中羊栖菜炭对重金属Cd的吸附效果最佳。污染土壤添加羊栖菜炭后可以明显提高污染土壤p H、有效磷、速效钾、全氮和有机质,且随添加量增加而幅度增大。不同量的羊栖菜炭的施入均有效降低了污染土壤有效态Cd含量,使得土壤重金属Cd由交换态向碳酸盐结合态、铁锰氧化物结合态、有机结合态和残渣态转化。综上所述,羊栖菜炭显著降低了土壤重金属Cd的生物有效性和生态毒性,从而显著降低重金属Cd的危害。  相似文献   

12.
生物炭对菜园土化学肥力的影响(英文)   总被引:1,自引:0,他引:1  
[目的]探讨生物炭对菜园土化学肥力的影响。[方法]采用盆栽试验,研究菜园土添加生物炭后土壤pH、有机质、有效氮、速效钾、有效磷、水溶性磷、交换性Ca、Mg等养分含量的变化。试验设置5个处理,分别为对照CK(不施生物炭)、T1(0.10%生物炭)、T2(0.25%生物炭)、T3(0.50%生物炭)、T4(1.00%生物炭)。[结果]不同处理的土壤pH、有机质、速效钾含量均随生物炭施用量的增多而显著增加,表现为T4〉T3〉T2〉T1〉CK;土壤有效磷和水溶性磷含量则呈现先增加后降低的趋势,均表现为T3最高,CK最低;有效氮和交换性Mg无显著性变化;与不施生物炭对照相比,适量添加生物炭后土壤的交换性Ca含量显著增加。[结论]生物炭能够显著提高菜园土化学肥力和化学性状,并且在T3(0.50%生物炭)施用条件下效果最佳。  相似文献   

13.
生物炭和石灰对红壤理化性质及烟草苗期生长影响的差异   总被引:3,自引:2,他引:1  
我国南方红壤普遍存在酸性强、铝毒和有效养分含量低等特性,本文研究了生物炭和石灰对红壤理化性质及烟草生长的差异,为烟田红壤改良提供理论基础。采用盆栽试验,设置0、0.5%、1%、2%生物炭用量与传统石灰用量(0.3%)等5个处理,研究了其对红壤pH值、交换性铝和锰、有效态矿质养分含量,以及烟草农艺性状、烟叶矿质养分含量等的影响。结果表明:施用生物炭或石灰后,烟草株高、茎粗和叶片数目等农艺性状明显改善,生物量显著提高。0.5%和1%生物炭处理烟叶的N、P、K、Ca和Mg含量较对照处理明显提高,但2%生物炭处理,烟叶N含量比对照处理降低了9.3%。与对照处理相比,石灰处理中烟叶的N、P和Ca含量增加,K和Mg含量下降。施用生物炭和石灰均能够提高红壤pH值,降低其交换性铝含量;且施用生物炭土壤的碱解氮、速效磷、速效钾、交换性钙和交换性镁含量均高于对照处理;而石灰处理仅交换性钙含量增加,交换性锰含量则减少。因此,施用生物炭和石灰均能促进红壤中烟草的生长,并有效改善红壤的理化性状。  相似文献   

14.
玉米秸秆炭对红壤镉吸附及养分含量、赋存形态的影响   总被引:5,自引:4,他引:1  
为明确玉米秸秆炭添加对土壤重金属镉(Cd)的吸附固持及主要养分元素N、P形态转化的影响,以土壤质量0%、2%、4%和8%的比例向红壤中加入玉米秸秆生物质炭材料,混合后培养35 d,通过等温吸附实验探究玉米秸秆炭施加对红壤中Cd~(2+)吸附的影响及其作用机制,并结合逐级化学提取法对红壤养分元素N、P和K的生物可利用性及其赋存形态变化进行研究。结果表明,玉米秸秆炭的施加能增加红壤p H值和有机碳总量,并显著提高红壤上Cd~(2+)的吸附量,Freundlich和Langmuir方程均能够较好拟合该等温吸附过程(R20.90);SEM-EDAX分析表明生物质炭吸附了部分土壤中的Cd~(2+),在p H 4~8范围内,土壤p H值的增大促进了红壤对Cd~(2+)的吸附;土壤悬液Zeta电位结果表明玉米秸秆炭的施加增加了土壤表面的负电荷量,使得红壤通过静电吸附作用结合更多的Cd~(2+)。此外,生物质炭的施加提高了土壤中离子交换态磷(KCl-P)、离子交换态氮(IEF-N)和速效钾含量,土壤中不同形态磷(Ca-P、Fe-P)含量随着生物质炭的增加均呈现上升趋势,而土壤中总可转化态氮(TTN)的含量则变化不明显。以上结果表明,玉米秸秆炭的施用能有效降低重金属污染土壤的环境风险,提高土壤质量。  相似文献   

15.
为探究土壤不同水分条件下生物炭对红壤磷素形态转化及磷酸酶活性的影响,以期为土壤磷素管理和生物炭合理利用提供参考。通过设置土壤不同含水量(33%、66%、100%)与生物炭添加量(0、0.5%、2%)进行培养试验,测定土壤的有效磷、各磷素形态(Al-P、Ca-P、Fe-P、O-P)及土壤酸性磷酸酶与碱性磷酸酶活性。结果表明:生物炭的施入显著提高了土壤有效磷含量;在培养前期,生物炭主要增加土壤中难溶态的Al-P含量,这主要是由生物炭带来的可溶性磷进入土壤中转化所导致;在培养后期,水分与生物炭都能够在一定程度上活化土壤中的Ca-P、Fe-P与O-P,释放更多磷素。生物炭本身呈碱性,添加到土壤中,有效中和了土壤酸度,使得土壤pH值上升2.82~3.13个单位,土壤酸性磷酸酶活性下降。此外,淹水条件能够降低土壤的酸性磷酸酶与碱性磷酸酶活性。研究表明,生物炭的添加能够有效提高土壤pH值、有效磷含量,同时降低土壤酸性磷酸酶的活性。  相似文献   

16.
金属元素改性生物质炭应用于磷酸盐吸附的研究进展   总被引:1,自引:1,他引:0  
磷含量过高是造成农业面源污染以及水体富营养化的主要原因,因此如何科学合理地控制农业径流以及河流湖泊中的磷酸盐浓度,对农业面源污染及水体富营养化防控具有重要意义。在众多磷酸盐固持方法中,生物质炭吸附法得到相关研究领域的广泛关注。未经改性的生物质炭对磷酸盐的吸附效率不佳,而通过金属元素改性能够显著提高该材料的磷酸盐吸附性能。本综述着重介绍不同金属元素(镁、钙、铁、镧及双金属)改性生物质炭应用于磷酸盐吸附领域中的主要制备方法和研究思路,并总结出该类材料在磷酸盐吸附过程中的主要影响因素,旨在为农业面源污染及水体富营养化防控提供科学依据和理论支撑。  相似文献   

17.
不同改性生物炭对溶液中Cd的吸附研究   总被引:2,自引:0,他引:2  
为研究生物炭对溶液中重金属Cd的吸附去除效果,进一步提升生物炭对Cd的吸附性能,以玉米芯、玉米秸秆、木屑为原料,分别在400℃、500℃、600℃和700℃密闭缺氧条件下热解制备生物炭,通过微波改性、Na OH改性方法对生物炭进行改性处理,研究初始浓度、溶液p H、吸附时间等因素对生物炭吸附Cd效果的影响,筛选出适合用于处理镉污染水体的生物炭品种。结果表明:当Cd浓度为100 mg/L时,玉米秸秆-600℃-Na生物炭(B-6-Na)对Cd的吸附可用Langmuir方程拟合,吸附量可达78.7 mg/g,去除率为78.7%,基本达到吸附平衡的时间为60~120 min;当溶液p H达到7时,三种生物炭对Cd吸附率均超过80%以上;600℃条件下经Na OH溶液改性制备的玉米秸秆生物炭能够更好地吸附溶液中的Cd。该研究结果为制备对污染物具有高效、深度净化功能的生物炭方法提供参考,在深入研究生物炭在重金属Cd污染修复的可行性方面提供理论支撑。  相似文献   

18.
为提高生物炭与微生物吸附能力及其协同改良土壤的性能,使用草酸和氨水对核桃壳生物炭改性,以期制备出性能更加优良的炭基菌剂,并通过红外光谱、动力学、热力学等研究方法,解析生物炭对枯草芽孢杆菌SL-44的吸附机制,并探究其稳定性。结果表明,草酸和氨水改性增加了生物炭在常温下对SL-44的吸附能力,且随着改性剂浓度的增加而增加,最大吸附量为1.5396×1011 CFU·g-1。此外,通过改性能够在生物炭表面引入COOH、C=O和—NH2官能团,改变电负性,并保持生物炭原有形貌结构。生物炭对菌体的吸附以物理吸附为主,并涉及化学吸附作用,其表面的—OH、C=O、COOH、—NH2均参与了吸附反应过程。生物炭吸附SL-44为放热过程(ΔH<0),随着温度的升高炭材料的吸附能力降低,低温更有利于吸附。常温下生物炭的吸附性能为氨水改性>草酸改性>未改性。因此增加生物炭表面氧、氮官能团含量可增加其吸菌量,同时在常温下可制得吸菌量更大的炭基菌剂。测定所得菌剂的活菌数和稳定性发现,被吸附的菌体数越多,其存活菌数量越大,且保藏稳定性越强。与未改性生物炭相比,改性后活菌数最高提高26.01%,而保藏4个月后存活率提高14.1个百分点。  相似文献   

19.
为改善稻壳炭对Cd2+的吸附能力,分别选用壳聚糖、硝酸铁与高锰酸钾对稻壳生物炭进行改性,成功制备了壳聚糖改性稻壳炭(C-BC)和铁锰改性稻壳炭(FM-BC),表征了各稻壳炭的基础理化性质,包括比表面积分析(BET)、傅里叶变换红外光谱(FTIR)、X射线衍射表征(XRD),进行了动力学吸附实验和等温吸附实验,并在不同pH和投加量条件下,研究了改性生物炭对Cd2+的吸附量和去除率。结果表明:两种改性方式均减小了稻壳炭的比表面积和总孔隙体积; FM-BC含有Mn-O、Fe-O的特征官能团,此外改性前后稻壳炭的官能团类型基本不变;两种改性方式均使稻壳炭产生了对应的晶体结构变化。两种改性炭对Cd2+动力学吸附特征均符合准二级动力学模型,颗粒内扩散模型均分为3个阶段,对Cd2+等温吸附特征均符合Langmuir模型; C-BC和FM-BC的最大吸附量分别为25.51 mg·g-1和16.25 mg·g-1,是BC (14.97 mg·g-1)的1.7倍和1.08倍。随着溶液pH增加,C-BC和FMBC的吸附量和去除率逐渐增加,且始终高于BC;随着投加量的增加,C-BC和FM-BC的Cd2+去除率逐渐增加,而吸附量逐渐降低。两种改性方式均能够在一定程度上提高稻壳炭对Cd2+的吸附能力,均以单分子层化学吸附占主导,C-BC的最大吸附量明显高于FM-BC,适度调整溶液pH和投加量可改善改性稻壳炭的Cd2+吸附效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号