首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 115 毫秒
1.
基于高斯函数的水稻叶曲线动态模拟   总被引:1,自引:0,他引:1  
【目的】以高斯函数为基础构建空间曲线模型,模拟研究水稻叶曲线空间变化特征。【方法】基于不同年份与施氮水平的水稻桶栽试验,定期利用三维激光扫描仪FastScan获取水稻主茎不同叶位叶曲线空间坐标数据,并利用动态建模技术构建水稻主茎不同叶位叶曲线动态模拟模型。【结果】水稻主茎不同叶位叶曲线末端与y轴正方向的夹角(AH)随生长度日(GDD)呈快-慢-快的变化趋势,符合S型曲线;从第1叶到第7叶,AH的最大值随叶位增加而增加,随后随叶位增加而减小;鞘叶夹角∠BFC与AH呈极显著线性关系。本文利用Logistic方程分别描述了不同施氮水平下水稻主茎各叶位叶曲线对应的AH以及叶曲线模型参数Sm随生长度日GDD的变化;使用分段函数描述了AH最大值随叶位的变化;将适宜施氮条件下水稻主茎第7叶位叶曲线末端与y轴正方向的夹角作为品种参数量化品种对叶曲线的影响,引入氮素影响因子量化不同氮素水平对叶片披垂度的影响。利用独立田间试验资料对所建立的模型进行检验后显示,不同施氮水平下主茎不同叶位叶曲线实测点到模拟曲线的改进Hausdorff距离(LTS-HD)的均值在分蘖中期和拔节期分别低于0.88 cm和1.18 cm。【结论】模型对水稻主茎叶曲线的空间动态变化过程具有较好的预测性,研究结果为进一步提高水稻叶片及植株的可视化效果提供了技术支持。  相似文献   

2.
水稻地上部单位器官物质分配过程的定量模拟   总被引:2,自引:0,他引:2  
 【目的】定量描述水稻植株地上部单位器官(叶片、叶鞘、节间、稻穗)干物质的动态分配过程,为作物形态建成模拟和可视化表达奠定基础。【方法】通过不同水稻品种和水氮试验中主茎和分蘖单位叶片、茎鞘及穗的干物质与水分及氮素含量的连续观测和定量分析,构建水稻地上部各单位器官干物质分配指数动态模型。【结果】模型采用线性和指数方程描述了叶片、茎鞘及穗单位器官分配指数随GDD的动态变化过程;分别用指数方程及一元二次方程描述了叶片、茎鞘及穗最大单位分配指数随不同叶位、鞘位以及穗位的动态变化过程;另外,以叶片、茎鞘及穗的氮素和水分因子法分别描述了水氮限制对各单位器官干物质分配过程的定量影响。利用独立的水稻田间试验资料对所建模型进行了初步的测试和检验,主茎与分蘖各单位器官干物重的观测值与模拟值的根均方差分别为0.93、0.81及6.8 kg•ha-1。【结论】本模型可较好地模拟不同生长条件下水稻不同茎蘖各单位器官干物质动态的变化过程。  相似文献   

3.
大麦籽粒蛋白质含量预测模型   总被引:1,自引:0,他引:1  
 【目的】构建大麦蛋白质含量预测模型,为建立大麦生产管理决策支持系统奠定基础。【方法】通过定量分析不同品种和氮肥处理大麦氮素吸收、积累、分配和转移的变化过程,建立了大麦花前氮素积累及分配和花后氮素吸收转移动态模型。模型利用抽穗期植株临界含氮量来表达氮素最大积累量,引入叶片潜在分配指数和茎鞘潜在分配指数2个品种遗传参数来区别不同品种在器官间的氮素分配差异,采用Richards方程来描述大麦花前氮素积累动态变化;采用指数函数方程来描述叶片氮的转移量随叶面积指数的动态变化以及籽粒从土壤中吸收的氮量随干物重的动态变化;采用非线性函数方程描述茎鞘和穗部的氮浓度随生理发育时间的动态变化。利用独立的观测资料对所构建的模型进行了检验。【结果】利用不同品种、氮肥、播期和种植地域试验数据检验模型,结果表明,大麦籽粒蛋白质含量模拟值与观测值的绝对预测误差为0.04%~1.27%,RMSE为0.20%~0.72%。精度良好。【结论】模型将经验性与机理性有机结合,具有较好的可靠性。  相似文献   

4.
基于生物量的水稻叶片主要几何属性模型研究   总被引:7,自引:3,他引:4  
 【目的】构建基于生物量的水稻叶片主要几何属性模型,为水稻株型设计与调控提供理论依据。【方法】以两优108、86优8、南粳43及扬稻6号为材料,设置品种、氮肥与密度田间试验,观测水稻主茎不同叶位叶片长度和宽度,分析了水稻主茎叶片长和宽的关系、比叶重(SLW)随叶位的变化规律,以及水稻叶片干重与叶长和叶宽的关系,构建基于生物量的水稻叶片主要几何属性模型。【结果】叶长与叶宽的关系可用幂指数方程表达,比叶重随叶位呈二次曲线变化。采用独立的试验资料检验模型,主茎叶片叶长、叶宽模拟值与实测值的根均方差(RMSE)分别为2.55和0.06 cm。【结论】几何属性模型可较好地模拟不同生长条件下水稻主茎不同叶位叶片的主要几何属性,为生长模型与形态结构模型的结合奠定了基础。  相似文献   

5.
水稻叶片几何参数的模拟分析   总被引:24,自引:1,他引:24  
【目的】在生长模型输出的基础上,构建预测水稻叶片几何参数的动态模型,以便更准确地实现水稻的虚拟生长。【方法】在试验观测的基础上,分析了不同品种类型水稻分蘖与主茎同伸叶片叶长之间以及叶长与叶宽之间的定量关系,进一步耦合水稻叶龄、叶面积和茎蘖数模拟模型,进行水稻叶片几何参数变化的动态模型构建。【结果】不同品种类型水稻分蘖与主茎同伸叶片的叶长比随分蘖叶序呈二次曲线变化,叶长与叶宽的关系可用幂指数函数描述。运用独立实测资料对模型进行的初步检验显示,本模型可较好地模拟不同生长条件下水稻不同叶位叶片的几何参数。【结论】本研究构建的水稻叶片几何参数分析模型较好地体现了器官几何参数受生态环境、品种类型和栽培措施影响的形态生理规律,为水稻虚拟生长提供了可靠和普适的叶片几何特征确定方法。  相似文献   

6.
水稻主茎出叶动态模拟研究   总被引:6,自引:0,他引:6  
 【目的】研究水稻主茎各叶片出伸与有效积温的关系,建立水稻主茎出叶与有效积温关系的动态模拟模型。【方法】选用16个水稻品种分别在云南丽江、江苏南京两个生态地区进行播期试验,观察主茎各叶片出伸与有效积温的定量关系。【结果】主茎叶片出伸所需有效积温与叶位的关系总体随叶位的上升而增加,且在整个叶龄进程中出现两个拐点,第一个拐点出现在第3叶龄期,第二个拐点出现在第N-n-2叶龄期。据此,对叶龄进程进行分段模拟,建立叶龄模型。利用不同环境下播期试验的出叶动态数据对模型进行检验,不同类型品种模拟叶龄与实测叶龄的根均方差(RMSE)都小于0.1。【结论】以各叶位叶片出伸与有效积温的关系建立的叶龄分段函数模型具有较好的预测性和实用性。  相似文献   

7.
水稻氮素同化关键酶活性与叶色变化的关系   总被引:10,自引:0,他引:10  
 【目的】明确水稻叶色变化的内在生理机制。【方法】采用无氮肥和常规氮肥两个处理的水培试验,测定水稻地上部不同叶位叶片叶色值、叶绿素含量及氮素同化关键酶活性的变化。【结果】在氮饥饿和常规施肥条件下,水稻地上部不同叶位的叶色具有明显的黑黄变化规律。氮饥饿处理剑叶抽出前不同叶位叶片叶色值基本上表现为顶二叶>顶一叶>顶三叶,剑叶抽出后表现为顶一叶>顶二叶>顶三叶。不同叶位叶片GS、GOGAT活性分别在拔节期、剑叶抽出期出现两次高峰,各叶位的叶片GS、GOGAT活性基本表现为顶二叶>顶一叶>顶三叶。不同叶位叶片的GOGAT活性与当周叶片的SPAD值、叶绿素a、叶绿素b及叶绿素(a+b)含量均呈显著或极显著相关。常规施肥处理条件下水稻叶色及酶活性在整个生育期变化趋势与氮饥饿处理相似,GS酶活性与酶活性测定一周后的叶色关系非常密切,GOGAT活性与顶三、四叶叶色呈显著负相关,与酶活性测定1周后顶二、顶三叶的叶绿素a含量、2周后顶二、顶三叶的叶绿素(a+b)含量及2周后顶二叶的叶绿素b含量也呈显著正相关。【结论】水稻叶色变化是一个复杂的生理生化代谢过程,水稻不同叶位叶片叶色及氮素同化关键酶GS、GOGAT酶活性均具有明显的高低变化,氮素同化关键酶活性高低与叶绿素的合成及叶色变化具有密切的因果关系,在叶绿素的合成和叶色形成过程中具有一定作用。水稻叶色黑黄变化是一个受内生节奏制约的生物学过程,氮素水平对叶色深浅具有一定的调节作用,但不能改变内生黑黄变化节奏。  相似文献   

8.
【目的】分析灌浆过程中不同器官的氮素含量和积累及分配变化与氮素利用效率的关系。【方法】在田间试验条件下,研究了10个水稻基因型的各组织器官氮素积累、分配利用与氮素利用效率间的相互关系。【结果】在籽粒灌浆过程中穗中的氮素含量品种间没有显著的差异而鞘叶和茎中的氮素含量主要在灌浆后期呈显著的差异。穗中氮素积累的增加伴随着鞘叶和茎的氮素积累的下降,尤其是鞘叶更明显,植株总吸氮量在器官中的分配比例随籽粒灌浆进程穗中氮素比例增加伴随鞘叶和茎的氮素比例减少。同样,穗、鞘叶、茎的氮素积累量和分配比例籽粒灌浆后期品种间呈显著的差异。籽粒灌浆不同时期的氮素利用效率品种间呈显著差异,其中成熟期氮素利用效率与成熟期穗和鞘叶氮素含量、鞘叶的氮素积累量和鞘叶氮素分配比例呈显著的负相关,与灌浆中后的穗氮素积累分配比例呈显著的正相关。【结论】在水稻氮高效育种工作中,结合组织氮素进行选择,可有效地提高选择效果。  相似文献   

9.
小麦籽粒蛋白质组分含量的动态模拟研究   总被引:2,自引:1,他引:1  
 【目的】建立小麦籽粒蛋白质组分含量的动态模拟模型,以期为预测小麦籽粒品质状况提供关键技术支持。【方法】通过定量分析不同品种和水氮处理下小麦籽粒蛋白质组分含量的变化过程,构建了小麦籽粒蛋白质组分含量随花后生长度日(GDD)的动态模拟模型。模型采用幂函数方程描述了清蛋白含量随花后GDD的动态变化,对数函数方程描述了醇溶蛋白和谷蛋白含量的变化过程;并以籽粒氮素和水分因子描述了不同水氮状况对小麦籽粒蛋白质组分含量变化的定量影响。同时利用独立的观测资料对所构建的模型进行了检验。【结果】模型对不同温度下灌浆期籽粒清蛋白、球蛋白、醇溶蛋白、谷蛋白含量预测的均方根差分别为0.44%、0.58%、0.53%和0.59%;对成熟期籽粒蛋白质组分含量预测的均方根差分别为0.41%、0.56%、0.75%和0.56%。【结论】模型对不同生长条件下小麦籽粒蛋白质组分含量的变化动态具有较好的预测性,从而为模拟小麦籽粒品质和完善小麦生长模拟系统奠定了基础。  相似文献   

10.
辣椒茎枝形态发生模拟模型研究   总被引:1,自引:0,他引:1  
【目的】构建基于有效积温(GDD)的辣椒茎枝形态发生模拟模型,为辣椒功能—结构模型的构建提供理论依据。【方法】在田间试验基础之上,系统分析了温度对辣椒主茎及分枝形态发生的影响,并量化了温度与主茎高度、直径和分枝长度形态的关系,构建了基于GDD和Logistic方程的辣椒主茎高度、直径和分枝长度形态发生的动态模型。【结果】辣椒主茎高度、直径和分枝长度的增长过程符合S型曲线;采用独立的试验资料检验模型,主茎高度、直径和分枝长度的模拟值与观察值之间的均方根差(RMSE)分别为2.854、0.060、3.220 cm。【结论】模拟值与观察值之间的RMSE值均较小,说明模拟结果具有较好的精确度,所构建的辣椒主茎和分枝形态模型为辣椒功能—结构模型的开发奠定了理论基础。  相似文献   

11.
水稻植株氮素吸收与籽粒蛋白质积累模型   总被引:3,自引:2,他引:1  
陈洁  汤亮  刘小军  曹卫星  朱艳 《中国农业科学》2011,44(10):1997-2004
 【目的】建立基于生理生态过程的水稻籽粒蛋白质积累模拟模型。【方法】基于不同地点、品种及施氮水平的田间试验资料,通过解析花前植株氮素吸收与积累、花后氮素吸收与转运的动态特征及定量关系,构建水稻植株氮素吸收与籽粒蛋白质积累的模拟模型。【结果】水稻籽粒中氮素积累速率取决于源限制下的可获取氮源和库限制下的氮素积累速率;源限制下的可获取氮源取决于营养器官向籽粒转运的氮素和花后植株吸收的氮素,库限制下的氮素积累速率由潜在氮素积累速率及温度、水分和氮素因子效应来综合决定。营养器官中的氮素转运又分为叶片和茎中积累氮素的转运;花前叶片和茎中的相对氮含量随播后生长度日线性增加;花后叶片和茎中的相对氮含量随花后生长度日线性递减;花后吸收的氮素随籽粒重的增加对数递增。利用独立的田间试验资料对所建模型进行了检验,结果显示模拟值与观测值之间具有较好的一致性,其中花前叶片与茎秆氮素吸收量、花后籽粒氮素吸收量、花后叶片与茎秆中氮素转运量的决定系数分别为0.968、0.980、0.974、0.970和0.976,根均方差分别为16.55%、13.24%、9.53%、10.93%和9.29%;籽粒蛋白质含量的决定系数分别为0.930,根均方差分别为7.82%。【结论】模型对不同栽培条件下水稻植株氮素吸收与转运以及籽粒蛋白质积累具有较好的预测性,为水稻生产中籽粒蛋白质指标的动态预测提供了量化工具。  相似文献   

12.
超级杂交籼稻抗倒能力比较及其对氮素的响应   总被引:6,自引:0,他引:6  
【目的】比较不同抗倒性超级杂交籼稻抗倒伏性差异及其原因,并分析氮素影响超级杂交籼稻抗倒性的生理机制,以期为水稻高产抗倒伏品种选育与栽培管理提供依据。【方法】以超级杂交籼稻Y两优2号(抗倒伏品种)和Ⅱ优084(易倒伏品种)为材料进行大田试验。2012年设置0、150和300 kg·hm-2 3个氮肥水平,2013年设置135、270和405 kg·hm-2 3个氮水平,比较不同处理倒伏发生率,并从力学、形态学和生理学指标等方面分析倒伏差异的原因。【结果】Y两优2号产量达11.7 t·hm-2,较Ⅱ优084高9.45%。这主要归因于Y两优2号较高的穗粒数及颖花量,二者分别较Ⅱ优084高28.0%和31.8%。与Ⅱ优084比较,Y两优2号成熟期田间倒伏率明显减少,倒伏指数下降19.0%,差异达显著水平,原因是Y两优2号基部节间显著缩短,茎壁明显增厚,叶鞘单位长度干重显著提高,从而弥补了茎秆粗度方面的劣势;其基部节间单位长度茎干重虽略有降低,但结构性碳水化合物含量较高,导致茎秆弯曲应力和折断弯矩显著增加,抗倒伏性提高。随施氮量增加,超级杂交籼稻基部节间茎秆折断弯矩显著降低,导致倒伏指数显著上升。大幅增加氮肥水平显著降低了抽穗期单茎鞘干重和灌浆后期基部节间单位长度叶鞘干重,从而使得茎秆质量变劣,且叶鞘对茎秆的保护和支持能力降低;此外,基部节间茎、鞘中木质素含量明显降低,茎秆弯曲应力和折断弯矩随之下降,倒伏风险增加。Ⅱ优084在较低的施氮水平下,折断弯矩大幅降低,甚至低于Y两优2号高氮水平,导致倒伏指数明显上升,尽管增加氮素用量未能显著增加其倒伏率,却较大幅度地降低了产量。【结论】缩短基部节间长度,增加茎壁厚度以弥补茎秆粗度不足的劣势,增加叶鞘充实程度,提高对茎秆的保护和支撑作用,是增强超级杂交籼稻茎秆机械强度和抗倒伏性的主要途径。氮素主要通过降低基部节间叶鞘充实程度及茎秆中结构性碳水化合物含量,特别是木质素的含量,从而降低茎秆强度,增加倒伏风险。  相似文献   

13.
水稻氮素和叶绿素SPAD叶位分布特点及氮素诊断的叶位选择   总被引:35,自引:3,他引:32  
 【目的】研究分析水稻氮素和SPAD值的叶位分布特点,并试图提出SPAD计诊断氮素营养状况的最佳测定叶位。【方法】在95-38、武育粳3号、镇稻5394、9915等4个粳型品种和1个籼型品种R161-10的盆播氮肥试验和宁粳2号大田氮肥试验的基础上,研究水稻氮素和叶绿素含量(SPAD值)随叶位的空间分布特征,并对不同叶位叶片的含氮率、叶绿素含量、SPAD值之间及其与总叶片含氮率和植株含氮率之间的相关性进行分析,比较不同叶位叶片SPAD测定值的变异系数。【结果】水稻不同叶位叶片含氮率、叶绿素含量、SPAD值均存在差异,增加施氮量能提高叶片含氮率、叶绿素含量和SPAD值,同时减少叶位间的差异;SPAD值对氮素的敏感性顺序为顶4叶、顶3叶和顶2叶,而顶1叶的敏感性排序因品种不同而不同;穗分化期、齐穗期和成熟期均以顶3叶与总叶片及植株含氮率相关系数最高;且适宜氮素水平下,穗分化期顶3叶SPAD值的变异系数最小。【结论】以某一特定叶片的SPAD值或以叶色差的大小来诊断水稻氮素营养状况和推荐水稻穗肥施用时,顶3叶是较为理想的指示叶或参照叶。  相似文献   

14.
不同施氮量对百优838生理特性及生长发育的影响   总被引:1,自引:0,他引:1  
【目的】研究不同氮肥施用量对优质稻百优838生理特性和生长发育特点的影响,为百优838以及同类优质稻品种的栽培调控和群体控制提供理论依据。【方法】采用随机区组设计,设6个不同氮肥施用量(0、90、150、210、270、330 kg/ha N)处理,调查百优838生长期间茎蘖穗的生长动态变化及产量。【结果】百优838在低氮施肥水平下即可建立良好的群体结构、获得较高净物质含量和产量,90 kg/ha N处理下百优838的产量最高,为8390.4 kg/ha,其对茎蘖数动态控制及最终的净物质含量最有利;330 kg/ha N处理产量最低。【结论】百优838对氮肥施用量较为敏感,最佳施氮量为90 kg/ha N。  相似文献   

15.
不同品种和栽培条件下水稻冠层光合有效辐射传输特征   总被引:13,自引:3,他引:10  
【目的】揭示水稻冠层光合有效辐射(PAR)传输特征在不同栽培条件下的变化规律。【方法】以2个不同株型水稻品种为材料,于2009—2010年分别设置不同栽插密度和施氮水平的田间试验,系统测定水稻主要生育时期的冠层结构和PAR传输参数,分析冠层结构和PAR传输参数随生育进程的动态变化规律以及PAR传输参数的日变化规律,并研究入射光散射比例对冠层PAR传输的影响。【结果】栽插密度和施氮量对水稻叶面积指数 (LAI)、冠层平均叶倾角和株高有显著影响。冠层PAR透过率、反射率随生育进程先减后增,最小值出现在孕穗至抽穗期;提高施氮量减少了冠层PAR反射率。随生育进程的推进,水稻冠层消光系数(K)逐渐增加,并随栽插密度和施氮量增加而增加,不同条件下的K值随移栽后天数的变化可以用指数递增方程来描述。冠层PAR反射率、截获率和K值的日变化呈向下抛物线状,以正午时刻最小;而PAR透过率则呈相反模式;灌浆期PAR透过率、截获率和K值的日变化幅度明显小于分蘖期和拔节期。消光系数随太阳高度角的变化可以用Doseresp曲线来描述,但受到品种特性和冠层结构的影响。随着入射光散射比例的增加,PAR透过率逐渐减少,K值逐渐增加。【结论】水稻冠层PAR传输特征受栽插密度和施氮量的调控,并存在显著的生育时期变化和日变化规律,同时受入射光散射比例的影响。  相似文献   

16.
不同库容量类型常规籼稻品种氮素吸收与分配的差异   总被引:4,自引:1,他引:3  
 【目的】研究不同库容量类型水稻品种氮素吸收与分配的差异,为大库容量类型品种的氮素遗传改良提供参考依据。【方法】在群体水培条件下,以国内、外不同年代育成的常规籼稻代表品种(2001年为88个、2002年为122个)为材料,测定干物重(包括根系)、产量及其构成因素、氮素含量等,采用组内最小平方和的动态聚类方法将供试品种按库容量从低到高依次分为A、B、C、D、E、F 6类,研究各类品种氮素吸收与分配的基本特点。【结果】供试品种间库容量的差异很大(426%、817%)。A、B、C、D、E、F类品种的平均库容量,2001年分别为426.37、642.53、770.96、903.73、1 064.32、1 213.90 g?m-2,2002年分别为359.36、574.11、764.98、962.43、1 200.11、1 455.59 g?m-2;大库容量品种抽穗期全株含氮率较高、结实期全株含氮率下降幅度较大;大库容量类型品种吸氮能力强,抽穗后更明显吸氮能力显著受到生育期与吸氮强度的影响,但吸氮强度的作用要大于生育期的作用。;大库容量类型品种氮素在根中比例小、成熟期氮素在茎鞘叶中比例小、穗中氮素比例大、结实期茎鞘叶氮素运转量大;增加吸氮量,促进茎鞘叶中的氮素运转有利于库容量的提高。【结论】大库容量类型品种吸氮能力特别是抽穗后的吸氮能力强,成熟期氮素在营养器官中比例小、穗中氮素比例大、结实期茎鞘叶氮素运转量大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号