首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为确定受迫振动深松铲的关键参数,以前进速度、振动频率、振动角作为试验因素,以牵引阻力作为相应指标,首先采用单因素试验设计进行室内土槽试验,确定在牵引阻力最小的情况下,振动频率为8.3~9.2 Hz,振动角度约为0°,前进速度为3 km/h;然后采用二次通用旋转回归试验设计对试验参数进行优化,通过DPSv7.05软件对试验数据进行处理,建立相应指标与影响因素之间的回归数学模型。通过响应面分析,得到前进速度、振动频率与牵引阻力的关系图、等高线图。得出前进速度、振动频率、振动角对牵引阻力的最优参数组合:振动频率为8.35 Hz、前进速度为3 km/h、振动角为0°,为振动深松机的优化设计提供了参考。  相似文献   

2.
振动挖掘铲减阻数值模拟及参数优化   总被引:4,自引:4,他引:0  
对小型振筛式马铃薯挖掘机振动挖掘铲的性能参数进行优化,借助Adams和Ls-Dyna相结合法模拟振动挖掘铲挖削土壤过程,据4因素3水平响应曲面法试验设计原理对影响挖掘铲挖削阻力的因素进行了多因素方差分析,并建立和优化了回归模型。结果表明:影响牵引阻力的因素由大到小依次为振动频率、牵引速率、入土角、振幅;当牵引速率为0.67m/s、振动频率13.77Hz、振动幅值11.93mm、入土角8.35°时,优化牵引阻力为1 449.59N。田间验证试验结果表明:试验阻力平均值与仿真结果误差5%,说明回归模型能较好的反映振动频率、牵引速率、入土角、振幅于牵引阻力之间的关系。  相似文献   

3.
振动挖掘式马铃薯收获机设计与试验(英文)   总被引:1,自引:0,他引:1  
为进一步解决我国丘陵山区马铃薯机械化收获问题,依据振动减阻收获机理,设计了一种与手扶拖拉机配套使用的振动挖掘式马铃薯收获机。对该收获机振动挖掘装置作业机理和振动铲运动学、动力学特性进行了研究分析,并确定了振动铲相关结构和工作参数。以机组前进速度、振动铲振频、振动铲振幅为试验因素,伤薯率和明薯率为试验指标进行了三元二次正交旋转组合试验。运用数据处理软件对回归方程进行了显著性分析,并建立了各试验因素与指标之间的数学模型。优化得出最佳因素组合为:机组前进速度0.85 m/s、振动铲振频12 Hz、振动铲振幅14.5 mm、伤薯率1.21%、明薯率98.51%。最佳参数组合下的验证试验结果表明:平均伤薯率1.28%、平均明薯率98.48%,作业性能符合马铃薯收获要求。  相似文献   

4.
液压激振式马铃薯收获机挖掘装置的设计   总被引:1,自引:0,他引:1  
在对振动速度变化成正弦曲线的挖掘铲进行运动学分析的基础上提出了振动挖掘铲的理想工作状态.应用动粘摩阻力模型对振动挖掘铲切入和提升阶段进行了动力学分析.在此基础上,以拖拉机液压输出作为动力源设计了一种液压激振式马铃薯收获机挖掘装置.应用SolidWorks和ADAMS软件建立了虚拟样机模型,在ADAMS中进行了虚拟试验.虚拟试验结果验证了设计的正确性,试验表明,设计的液压激振式马铃薯收获机挖掘装置具有振幅和频率调整方便的特点,在4~10 Hz范围内能较好的进行振动掘削,挖掘铲的平均牵引阻力为1.3~1.9 KN.  相似文献   

5.
为提高牛蒡真空干燥的干燥效率和干燥品质,通过单因素试验和二次回归组合正交设计试验,研究干燥温度、真空度、牛蒡切片厚度三因素对干燥速率和缩水率两个指标的影响.利用单因素和双因素分析法分析各因素与试验指标的关系,确定指标和各因素之间的回归数学模型及各因素在回归模型中的主次顺序.试验结果表明干燥温度对牛蒡干燥缩水率的影响最大.通过优化计算,得出牛蒡真空干燥最优参数:厚度5.9mm、真空度0.075MPa、温度75℃,此参数下牛蒡干燥缩水率为43.72%.  相似文献   

6.
利用由振幅、振动频率和前进速度定义的参数λ、K和T建立对振动式挖掘机牵引动力的回归方程.从这些回归方程的决定系数可知,用参数λ、K和T来说明它们对振动挖掘机牵引动力的回归程度时,参数λ的决定系数最大,参数T的决定系数次之.  相似文献   

7.
4U-1400FD型马铃薯联合收获机挖掘铲的参数优化   总被引:6,自引:3,他引:3  
对4U-1400FD型马铃薯联合收获机的挖掘铲建立牵引阻力的数学模型,在此模型下分析挖掘铲的铲面倾角、作业速度、挖掘深度、铲体长度等因素对挖掘铲牵引阻力的影响.结果表明:挖掘铲参数的最佳组合为铲面倾角20°,铲体长度470 mm,铲宽1 400mm.通过田间试验,该挖掘铲的性能符合规定的指标.  相似文献   

8.
田间作业机械的工作阻力分析是农业机械设计工作中一重要环节,对试验装置的可靠性和测量精度具有较高要求。为研究农机关键触土部件的试验样件的前行阻力,本文设计了一种阻力测试装置,并保证了较高的稳定性和测量精度。针对该装置在正常工作时产生的振动是否会影响其工作性能,利用Solid Works软件对测试装置的台架进行三维建模,并采用有限元分析软件ANSYS-Workbench对其进行模态分析,求解出台架的前6阶模态频率与振型。模态分析结果表明:台架的前6阶固有频率分布在21~38Hz之间,而当牵引台的行进速度为0.1~1.0m·s-1时,该装置受到的外激频率为0.346~3.462Hz,远低于台架的低阶固有频率21.778Hz,有效地避免了共振的产生。以插秧机船板样件的拖拽试验为例,通过三因素三水平正交试验,分析该装置结构设计的合理性。分析结果表明:船板样式、配重和前进速度对试验指标的影响极显著,并得出各因素的最优组合,即前进速度为0.4m·s-1、配重为0.7kg、仿生船板样件的滑行阻力最小。该研究为水田、旱地作业机械关键触土部件的试验样件的前行阻力分析提供了条件。  相似文献   

9.
结合当前新疆马铃薯种植模式,设计出一种集挖掘装置、振幅可调式振动分离机构、速度可调式输送装置、液压驱动装置及电气控制系统等为一体的马铃薯收获机,可通过电磁比例流量阀实现装置的输送速度、振动转速等参数的可调,通过调节板实现装置振幅参数的可调;使用ADAMS软件对V型振动分离机构进行仿真,得到V型振动分离机构在水平方向上以370 mm左右的位移进行往复运动,在垂直方向上以260 mm左右的位移进行起伏循环运动。最后以输送速度、振动转速、振幅为因素,以明薯率和破皮率为响应指标进行装备田间性能试验,得出3个影响因素中振幅对明薯率有显著影响,输送速度和振动转速的影响不显著,影响程度依次为振幅输送速度振动转速;输送速度和振动转速对伤薯率有显著影响,振幅的影响不显著,影响程度依次为输送速度振动转速振幅。分析各影响因素对明薯率和伤薯率的影响,并对其进行优化得出,当输送速度为110 r/min,振动转速为100 r/min,振幅水平为下时,明薯率达到92.822 3%,伤薯率为2.790 5%。  相似文献   

10.
为适应东北高寒地区水稻秸秆的机械化还田作业,降低还田作业的牵引阻力、加快秸秆的腐解,设计了具有滑切减阻特性的还田弯刀组成的高秆翻埋装置和使秸秆均匀平铺同时施入秸秆腐解剂的秸秆梳理-腐解剂施入装置。采用旋转正交设计方法设计试验方案,考察机器前进速度、刀辊转速、还田深度三个因素对牵引阻力的影响,建立牵引阻力模型,得到牵引阻力最优的参数组合:机器前进速度为1.4 m/s,刀滚转速210 r/min,还田深度为10 cm。影响阻力的因素主次顺序为:刀辊转速>机器前进速度>还田深度。  相似文献   

11.
为探究自激式振动深松作业新的仿真研究方法,通过动力学仿真软件RecurDyn和离散元仿真软件EDEM对自激式振动深松过程进行联合仿真分析。以耕作阻力为评价指标,耕作深度、牵引速度和弹簧刚度为变量,设计3因素3水平响应面分析和优化试验。结果表明,牵引速度为3 km·h-1、耕作深度为350 mm和弹簧刚度为300 N·mm-1时,深松铲最大入土角为26.39°,弹簧振动频率为3.84~6.25 Hz,弹簧对耕作阻力有明显缓冲作用;自激式深松铲参数耕作深度为301 mm、速度为2.6 km·h-1、弹簧刚度115 N·mm-1时,以最小耕作阻力为评价指标的作业效果最优。EDEM-RecurDyn联合仿真为自激式振动深松铲的优化设计提供新方法。  相似文献   

12.
针对排种器在垂直方向的振动特性,搭建垂直振动试验台。以勺轮式玉米排种器为研究对象,优先进行工作速度单因素试验,确定勺轮式排种器在工作速度为2~5 km·h~(-1)排种性能较好;以播种机振动频率、振动幅值、工作速度为试验因素,排种合格率、重播率、漏播率、变异系数为评价指标进行3因素3水平响应面试验。试验结果表明,振动幅值和工作速度对4个评价指标均有显著影响,振动频率对除重播率外其他3个因素均有显著影响。各因素对重播率影响程度为振动幅值工作速度振动频率;各因素对漏播率影响程度为振动幅值振动频率工作速度,各因素对合格率均有极显著影响;各因素对变异系数影响程度为振动幅值工作速度振动频率。  相似文献   

13.
为了研究草沙障铺设过程中插入阻力和牵引的大小和影响因素,并为固沙装备铺设系统和牵引动力系统设计提供理论参数,本研究设计并搭建了草沙障插入装置试验平台,对刀盘在沙地中插草过程进行了参数化建模,分析了刀盘各运动状态下的受力因素,并进行了参数化计算和公式推导,建立了不同运动状态下插入阻力和牵引力平衡方程。结果表明,通过单因素和正交试验研究,铺设速度对插入阻力和牵引力大小并无明显影响,但是插入深度和铺设厚度对两者影响显著。建立插入阻力和牵引阻力与插入深度、铺设厚度、铺设速度之间的回归模型,通过分析回归模型和响应面结果最终得出影响插入阻力的因素主次顺序为铺设厚度和插入阻力,影响牵引力的因素主次为插入深度和铺设厚度。将实际测量值与理论模型计算值比较,最后得出相近程度达到98%左右。  相似文献   

14.
为了研究弹性与刚性深松部件对牵引阻力的影响,以弹齿式深松铲和刚性深松铲为研究对象,对两种深松铲进行牵引力及振动参数测试,对比振动式深松铲和非振动式深松铲对牵引阻力的影响,通过对两种深松铲的受力分析可知,弹齿式深松铲的牵引阻力比刚性深松铲牵引阻力降低9.95%,深松比阻减小14.52%,有较好的减阻效果。正交试验分析结果表明:当选用弹齿式深松铲、前进速度为1m·s-1、耕深为25cm时,牵引阻力、功耗均出现最小值。弹齿式深松铲适用于耕作层土壤的疏松,而刚齿式深松铲适用于深松犁底层坚硬的土壤。弹齿式深松铲的振动主频率为5.86Hz,刚性深松铲的振动主频率为4.39Hz。说明土壤阻力变化是引起弹齿式深松铲的振动的主要原因。  相似文献   

15.
铲筛激振式马铃薯挖掘机的设计与研究   总被引:2,自引:0,他引:2  
针对我国丘陵山地作业大型机械不适宜、小型手扶类拖拉机动力不足的问题,以减阻和提高土薯分离效率为目标,设计了一种铲筛激振式马铃薯挖掘机。该机将挖掘铲后端设计成栅格状,分离筛各齿条倾角由内向外增大,增加了土薯分离面积;采用铰链四杆式摆动机构和组合式偏心轮,可实现挖掘铲倾角和振幅调整。田间试验表明,该机土薯分离效果良好,明薯率为96.2%,挖净率为97.8%,伤薯率低于3.9%;在前进速度为0.34 m/s情况下,无振动时的平均牵引阻力为1 498 N,而频率为14 Hz,振幅为4 mm和8 mm时的平均牵引阻力分别为1 204 N和995 N。研究表明,振动挖掘可以降低牵引阻力,提高土薯分离效率,所设计的挖掘机性能指标均满足作业要求。  相似文献   

16.
针对现有中药材挖掘机在挖掘黄芪时出现分离效率低、损伤率较高等问题,对典型中药材振动挖掘机的工作参数进行优化,使其满足黄芪挖掘作业。对其振动机构进行运动分析,通过Mathlab优化工具箱对振动机构的核心参数进行优化。基于Box-Behnken试验设计法以牵引速度、挖掘铲振动频率和铲面倾角为影响因素,以明茎率为主要指标,兼顾伤茎率进行参数优化。结果表明:当整机牵引速度为0.64m/s,挖掘铲振动频率为8 Hz,铲面倾角为15°时,明茎率为95.62%、伤茎率0.73%。田间试验结果表明:同等条件下,明茎率为93.62%、伤茎率0.82%;整机运行平稳可靠。优化的振动挖掘机满足黄芪挖掘农艺要求。  相似文献   

17.
为分析锯齿回转切割器作业参数变化对大豆秸秆切割阻力的影响,优选切割器最佳作业参数组合。利用ANSYS-LS/DYNA对锯齿回转切割器的大豆秸秆切割过程进行了模拟仿真,分析了秸秆整个切割过程的切割阻力变化情况。分析结果表明,秸秆切割阻力为多峰波动函数。以切割线速度、切割器倾角及作业速度为试验因素,切割阻力为试验指标,进行了正交参数优化虚拟试验研究。影响因素顺序为切割线速度切割器倾角作业速度,切割线速度及切割器倾角为极显著影响(P0.01),作业速度为显著影响(P0.05);切割阻力随着切割线速度的增大及前进速度的减小而先减后增,随着切割器倾角增大而增大。当切割线速度15 m·s~(-1),切割器倾角-10°,作业速度1.5 m·s~(-1)时,切割阻力最小为13.387 N,且切割器最优参数通过了仿真试验验证。  相似文献   

18.
复式花生脱壳机振动分选装置试验及参数优化   总被引:1,自引:0,他引:1  
通过单因素试验和Box-Behnken试验设计及响应面分析,建立复式花生脱壳机振动筛作业含杂率和损失率数学模型,采用响应曲面优化分析和多目标优化设计方法,获得复式花生脱壳机振动分选装置振动筛作业最佳工作参数为振幅3.8 mm、振动频率485 Hz、振动臂角度35°,此条件下分选装置含杂率为2.18%,损失率为1.74%。  相似文献   

19.
为分析土壤参数对履带收获机水田转向阻力的影响,以土壤参数为基础建立转向阻力矩数学模型,进行相关理论分析和水田土壤参数试验得出转向阻力矩,并实车试验进行数据比较。结果表明,先通过田间土壤参数试验,再通过数学模型求转向阻力矩这一方法正确和可行,为今后履带车辆田间试验研究和车辆设计提供了依据。  相似文献   

20.
采用SolidWorks、有限元分析软件与RecurDyn相结合的方式建立收获机的人-机-路面系统的刚柔耦合虚拟样机模型,以驾驶员全身振动加权加速度均方根值为评价指标,仿真模拟收获机在水稻、小麦以及油菜田行驶时的振动舒适性。结果表明,行驶速度、路面硬度、竖割刀的添加对收获机振动舒适性影响较大,路面硬度越大、收获机行驶速度越快,人体的主观不舒适性感受就越强烈;竖割刀的添加增强了人体的不舒适感。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号