首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
[目的]探讨超声波辅助淀粉酶和糖化酶酶解玉米淀粉的工艺条件,为提高糖收率,降低生产成本,提高企业经济效益提供参考.[方法]采用超声波辅助淀粉酶和糖化酶酶解玉米淀粉,以DE值为测定指标,液化过程选取淀粉质量浓度、加酶量、超声功率、液化反应时间4个影响因素,进行正交试验,确定最佳液化酶解工艺条件;糖化过程选取加酶量、超声功率、糖化反应时间3个影响因素,进行正交试验,确定最佳糖化酶解工艺条件.[结果]最佳液化工艺条件为:淀粉质量浓度0.3 g/ml、加酶量20 U/g淀粉,超声功率100 W,反应时间1h;最佳糖化工艺条件为:加酶量50 U/g淀粉,超声功率100 W,糖化反应时间60h.[结论]研究得到了超声波辅助淀粉酶和糖化酶酶解玉米淀粉的最佳工艺条件,在此工艺条件下,DE值达到107%以上,能够提高糖收率,节约生产成本,有助于企业经济效益的提高.  相似文献   

2.
藜麦饮料液化糖化工艺研究   总被引:1,自引:0,他引:1  
[目的]优化藜麦淀粉进行水解时的液化和糖化的工艺条件。[方法]以藜麦为原料,DE值为主要评估指标,采用单因素和正交试验设计对藜麦饮料生产中的淀粉液化和糖化工艺进行优化研究。[结果]最优液化工艺条件为α-淀粉酶用量11 U/g、液化时间45 min、液化温度65℃、pH 7.0,此时液化DE值为24.46%。最优糖化工艺条件:糖化酶用量110 U/g、糖化时间70 min、糖化温度70℃、pH 5.0,糖化DE值为63.45%。[结论]该研究可为藜麦在饮料研发方向提供一定的参考。  相似文献   

3.
石志红 《安徽农业科学》2009,37(10):4637-4638
[目的]寻求黑玉米饮料的最佳生产工艺。[方法]以成熟度为60%~70%的黑玉米鲜穗为材料生产黑玉米饮料,研究不同酶解条件、糖化时间、糖化酶用量和稳定剂等对产品质量的影响。[结果]最佳酶解条件为:a-2淀粉酶用量1%,90℃保温酶解5 min;糖化酶参考用量为:液化DE值17%,淀粉乳33%,酶制剂240 U/g淀粉,实际生产中,糖化酶加入比例1%,55~60℃保温糖化4~5 h;添加比例为0.20%的复合稳定剂(琼脂+黄原胶)的稳定效果最好;三聚磷酸钠、食盐、柠檬酸钠等对饮料电解质平衡和稳定性具有重要影响。[结论]黑玉米饮料的最佳生产工艺为:a-2淀粉酶(添加比例1%)90℃酶解5 min,糖化酶(添加比例1%)55~60℃糖化4~5 h,0.20%复合稳定剂(琼脂+黄原胶)。  相似文献   

4.
普鲁兰酶在生产玉米淀粉全糖粉中的应用与研究   总被引:1,自引:0,他引:1  
[目的]提高产品的转化率。[方法]研究普鲁兰酶在酶法生产玉米淀粉全糖粉过程中的协同作用,探讨最佳的生产工艺。[结果]结果表明,在糖化过程中,加入0.10 U/g淀粉的普鲁兰酶后,能缩短糖化时间,提高糖化的程度,提升产品的DE值。糖化的最佳工艺参数为:糖化温度60℃、pH值4.5、糖化时间60 h、葡萄糖淀粉酶用量250 U/g淀粉、普鲁兰酶用量0.13 U/g淀粉,产品的DE值达98%以上。[结论]该研究为玉米淀粉制备高品质的全糖粉生产提供新的理论依据。  相似文献   

5.
[目的]揭示利用马铃薯淀粉生产葡萄糖的机制,评价获得葡萄糖的品质。[方法]以马铃薯淀粉为材料,采用双酶解法,按调浆、加酶、液化、灭酶、调节pH值、加酶、糖化、灭酶、去杂、脱色、浓缩的工艺流程提取葡萄糖,研究马铃薯淀粉提取葡萄糖的机制。[结果]马铃薯淀粉生产葡萄糖的机制是利用生物酶将大分子碳水化合物分解为小分子碳水化合物,获得的葡萄糖糖浆的糖度高,固形物少,色泽纯正清彻,还原糖浓度高,DE值为47,品质优于玉米淀粉提取获得的葡萄糖。水解条件对马铃薯淀粉水解成功与否起着非常重要的作用。[结论]该研究提出的马铃薯淀粉生产葡萄糖的方法适用可行。  相似文献   

6.
强化杏鲍菇多糖苦荞燕麦乳的研制   总被引:1,自引:1,他引:0  
《山西农业科学》2016,(3):402-409
以杏鲍菇粉为原料,利用热水浸提法提取杏鲍菇中的多糖成分,再经过浓缩,制得杏鲍菇多糖含量为24.31 mg/m L的杏鲍菇多糖浓缩液;应用氨基酸比值系数分评价法确定了苦荞燕麦复合粉中燕麦粉与苦荞粉最佳配比(质量比)为1∶4;苦荞燕麦复合粉经过糊化、液化、糖化得到苦荞燕麦乳,将杏鲍菇多糖浓缩液强化到苦荞燕麦乳液中研制一种新型谷物饮料。通过正交试验优化了苦荞燕麦复合粉的糊化、液化、糖化工艺、最终产品配方以及稳定性最佳条件。结果表明,糊化条件:料水比1∶10,糊化温度85℃,糊化时间30 min;液化最佳条件:α-淀粉酶添加量以淀粉计为2.5 U/g,酶解时间50 min,酶解温度60℃,在此条件下DE值可达到17.10;糖化最佳条件:β-淀粉酶添加量以淀粉计为200 U/g,酶解时间2 h,酶解温度60℃,在此条件下DE值可达到38.83;最佳配方:苦荞燕麦乳2 m L,杏鲍菇多糖浓缩液添加量2.5 mg/m L,木糖醇添加量7%;产品稳定性:复合乳化剂添加量为0.2%,CMC-Na添加量为0.25%,海藻酸钠添加量为0.3%,在此条件下离心沉淀率为6.41%,稳定性最佳。  相似文献   

7.
[目的]研究高温α-淀粉酶和糖化酶对怀山药的分解效果。[方法]利用高温α-淀粉酶和糖化酶对怀山药分步进行水解糖化以减小分散颗粒直径和沉淀率,在控制一定温度和时间的条件下,采用正交设计和因素分析来确定最适酶解条件,从而提高山药汁的可溶性固形物百分含量,降低其沉淀率和色泽。[结果]试验表明,双酶法分解怀山药的最适酶解条件为:高温α-淀粉酶添加量0.4%(20 000U),山药浓度10%,酶解温度85℃,时间2 h条件下酶解效果最佳;糖化酶添加量0.4%(10 000 U),糖化温度55℃,时间3 h,pH 5.0。[结论]研究可为怀山药的深度开发提供一定的理论依据。  相似文献   

8.
旨在研究紫山药淀粉糖化工艺及在模拟体外消化过程中的消化特性。以还原糖含量为指标,主要考察葡萄糖糖化酶添加量、温度、pH值和时间对糖化效果的影响,并采用正交试验优化糖化工艺。结果表明,最优糖化工艺条件为糖化酶添加量180 U/g,糖化温度65℃,糖化pH值4.5,糖化时间60 min。体外消化模拟试验结果表明,紫山药的可溶性糖、还原性糖释放率较低,且远低于酶解过程,主要是因为模拟的肠液中只有胰淀粉酶可以水解紫山药淀粉,产生糊精和糖,不能进一步水解。  相似文献   

9.
以陕南豆薯淀粉浆液为试材,在单因素试验的基础上,采用L9(34)正交试验优化其液化和糖化工艺。结果表明,陕南豆薯淀粉浆液最佳的液化工艺为α-淀粉酶添加量75 U/g,液化pH值5.0,液化时间90 min,液化温度90℃;最佳的糖化工艺为糖化酶添加量200 U/g,糖化pH值4.5,糖化时间120 min,糖化温度60℃。在此优化条件下,糖化液的葡萄糖值(DE值)为16.23%。  相似文献   

10.
木薯淀粉酶解糖化工艺研究   总被引:1,自引:0,他引:1  
以淀粉的水解程度(DE值)为指标,对木薯淀粉糖化条件进行了研究,分析了糖化温度、时间、酶用量、pH和转速等单因素范围分别对淀粉水解的影响,结果表明:糖化温度在60~65℃,反应时间在105~115min,酶用量在1.5~2.5 mL,pH在3.5~4.5,转速约为180 r·min-1时淀粉水解的效果最好.通过正交试验...  相似文献   

11.
双酶法水解板栗淀粉工艺研究   总被引:2,自引:0,他引:2  
为使板栗中的淀粉能被人体更有效利用,减少板栗饮料生产中的分层和沉淀现象。采用双酶法(耐高温α-淀粉酶、糖化酶)对板栗浆液中的淀粉进行水解。以淀粉水解度为指标,通过单因素试验和正交试验优化,最终确定了制取板栗淀粉水解液的糊化、糖化的最佳工艺条件分别为加酶量8U/g、95℃、pH6.0、时间60min以及加酶量80U/g、60℃、pH4.0、时间50min。  相似文献   

12.
李妍  蔡慧红 《安徽农业科学》2014,(33):11879-11881,11900
[目的]研制淮山酶解饮料的最优工艺.[方法]以鲜淮山为原料,采用生物酶进行液化糖化后,在淮山水解液基础上进行调配制备淮山饮料.对淮山的护色、液化、糖化的工艺条件及淮山饮料的适宜配方进行了探讨.[结果]试验表明,选用0.1%的柠檬酸及0.2%的抗坏血酸复配护色能更好地控制淮山褐变;液化的适宜工艺条件为α-淀粉酶用量0.35%,温度为70℃,时间为1.5h;糖化的适宜工艺条件为糖化酶用量为0.15%,温度为60℃,时间为4h;在淮山水解液中加入8%白砂糖和0.15%黄原胶调配,口感风味最好.[结论]研究可为淮山的进一步开发利用提供参考依据.  相似文献   

13.
马铃薯淀粉糊化工艺研究   总被引:1,自引:0,他引:1  
魏显华  党斌 《安徽农业科学》2010,38(12):6512-6514
[目的]优化马铃薯淀粉糊化工艺条件。[方法]以青海省马铃薯淀粉为原料,采用低温糊化法,通过单因素和正交试验对其糊化条件进行了优化。[结果]马铃薯淀粉糊化的最佳工艺条件:马铃薯淀粉与水的比例1∶18,糊化温度55℃,40%的NaOH添加量1.0ml,糊化时间30min;在此条件下,所制得的淀粉糊黏稠、透明、糊化度达到96%。各单因素中,糊化温度对淀粉糊化度的影响最大,马铃薯淀粉与水的比例(g∶g)、NaOH添加量次之,糊化时间对糊化度的影响最小,糊化温度和马铃薯淀粉与水的比例是影响马铃薯淀粉糊化度的关键因子。[结论]该研究结果为淀粉糊化工艺的研究和应用提供了理论依据。  相似文献   

14.
[目的]研究糖化酶与α-淀粉酶制备马铃薯微孔淀粉的工艺。[方法]以马铃薯淀粉为原料,淀粉水解率和油脂吸附率为评价指标,考察反应温度、酶配比[糖化酶∶α-淀粉酶(W/W)]、加酶量、底物量浓度[淀粉∶溶液(W/V)]、缓冲液pH和反应时间6个因素对马铃薯淀粉微孔化的影响。[结果]马铃薯微孔淀粉的最佳制备工艺条件为反应温度45℃,酶配比6∶1,加酶量1.0%,底物量浓度0.14g/ml,缓冲液pH 4,反应时间8 h;在该条件下制得的微孔淀粉的油脂吸附率为70.2%,淀粉水解率为34.16%。[结论]该研究为微孔淀粉的开发和利用提供了依据。  相似文献   

15.
王伟  王洪荣  朱素华  宋荣渊  董淑红  谢铮 《安徽农业科学》2010,38(6):2836-2837,2892
[目的]研究玉米淀粉糊化度的影响因素。[方法]以温度、时间和物料粒度为3个不同的因素,利用3因素各水平试验设计,研究了它们对玉米淀粉糊化度的影响。[结果]粒度、温度和时间及其两两互作和三者的互作均对玉米淀粉糊化度有极显著影响。单因素试验表明,20目淀粉的糊化度平均值最高;90℃下处理淀粉的糊化度平均值最高;处理10 min淀粉的糊化度平均值最高。两因素互作比较表明,粒度为20目,处理温度为90℃淀粉的糊化度平均值最高;粒度为40目,处理10 min淀粉的糊化度平均值最高;在90℃下处理10 min淀粉的糊化度平均值最高。三因素互作比较表明:粒度为20目,90℃下处理10 min淀粉的糊化度平均值最高,可达85%。[结论]该研究为山区的饲料生产和畜牧业发展提供了支持。  相似文献   

16.
[目的]探讨利用小麦B淀粉制备麦芽糊精的方法。[方法]在单因素试验的基础上,对B淀粉的料浆浓度、加酶量、反应时间、反应温度4个因素设3个水平进行正交试验,分析4个因素对小麦B淀粉液化程度的影响,并用高效液相色谱法测定麦芽糊精的糖分组成。[结果]结果表明,在淀粉浆pH值为6.3~6.4,加氯化钙为500 mg/L时,最优的小麦B淀粉液化工艺条件为:料浆浓度27%,反应温度95℃、反应时间40 min,加酶量30 U/g B淀粉(干基),在最佳工艺条件下得到的液化液蛋白含量很低,大概为0.46%,基本为可溶性蛋白。随着DE值的增大,小分子糖含量明显增多,七糖及以上的大分子糖明显减少。[结论]该试验为小麦B淀粉麦芽糊精的生产与应用提供了理论依据。  相似文献   

17.
通过行星式球磨机对玉米淀粉进行湿法细微化处理,并采用双酶法对玉米淀粉进行糖化,调查细微化对玉米淀粉结晶结构和糖化效果的影响。显微镜观察和X-射线衍射分析表明,玉米淀粉颗粒在湿磨1 h以后转变为非晶态;湿磨可消除液化反应对玉米淀粉酶解葡萄糖收率的影响,无液化反应时,湿磨1 h玉米淀粉的葡萄糖收率为99.5%,远高于原玉米淀粉的41.6%,在70℃的条件下液化,液化时间的长短对湿磨1 h玉米淀粉和原玉米淀粉的葡萄糖收率的影响较小,葡萄糖收率均维持在99%左右。由此可见,对玉米淀粉进行湿磨可使淀粉颗粒非晶态化,消除液化反应对淀粉酶解葡萄糖收率的影响。  相似文献   

18.
木薯酒精浓醪发酵液化糖化工艺的研究   总被引:3,自引:1,他引:2  
[目的]优化木薯粉浓醪酒精发酵中液化糖化的工艺条件。[方法]以木薯粉为原料进行浓醪酒精发酵,在单因素试验的基础上,运用正交试验对液化糖化工艺中的各种参数进行了研究。[结果]正交试验表明,各因素的影响主次为:糖化酶量>糖化时间>糖化pH值>糖化温度。根据各因素的水平K值大小,确定了木薯粉浓醪酒精发酵中最佳液化工艺条件,即:料水比为1∶2.3,液化温度105℃,液化酶用量为10 U/g木薯粉,液化时间为2 h;最佳糖化工艺条件为:糖化pH值4.5,60℃时加入糖化酶150 U/g木薯粉后,直接将醪液冷却至33℃进行发酵,即糖化与发酵同时进行。在该条件下进行木薯粉浓醪酒精发酵,酒精终浓度可达16.9%(V/V)。[结论]该研究为后续发酵条件的优化以及100 L的放大试验打下了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号