首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 609 毫秒
1.
麦穗检测与计数关乎小麦的产量预估与育种,估算小麦产量的重要指标之一就是单位面积穗数,如何准确检测单位面积穗数对于农业生产管理决策有着重要的指导作用。因此本研究提出了基于改进的YOLOX-s的田间麦穗检测方法对麦穗进行精准识别与计数。首先,选取多个国家的不同品种小麦图像,使用图像增强、数据清洗等方法建立全球小麦图像数据集。其次,在YOLOX-s的基础上根据麦穗图像的特点,重新设计了特征提取网络的深度,同时加入注意力机制,充分提取麦穗特征。将SPP模块替换为SPPF模块,在提升推理速度的同时,不降低模型性能。通过全球小麦图像数据集进行模型训练,并使用实地拍摄的麦田图像对模型进行测试。试验结果表明:通过全球小麦图像数据集的训练,改进的YOLOX-s网络模型的mAP达到了89.03%,精确度达到了91.21%。在实拍的麦田图像中,计数准确率达到了97.93%,平均单幅图像计数为0.194 s,单株小麦识别速度为2.8 ms,检测速度较YOLOX-s提升30.2%,计数速度优异,麦穗定位准确。  相似文献   

2.
基于改进Bayes抠图算法的麦穗小穗自动计数方法   总被引:1,自引:1,他引:0  
小麦产量评估需人工获取田间单位面积的麦穗数和麦穗小穗数,往往耗时耗力。为了实现高效、自动地麦穗小穗计数,提出一种基于改进Bayes抠图算法的麦穗小穗自动计数方法。该方法首先利用改进Bayes抠图算法对获取地自然生长条件下的麦穗图像进行抠图,将麦穗从自然背景中分割出来。然后对该图像进行平滑滤波和二值化,运用迭代极限腐蚀运算对二值化图像进行腐蚀处理,去除麦穗图像中的麦芒,分离出麦穗上每个单独的麦穗小穗。再运用面积滤波滤除掉面积过小的区域,对剩余区域的黑洞进行填充,由此每个单独的麦穗小穗形成一个单独的连通区域,最后对连通区域进行标记和计数,完成麦穗小穗的自动计数。使用4个小麦品种的麦穗图像对麦穗上的小穗进行计数验证,结果表明,该方法在识别4个品种田间麦穗单幅图像中小穗数量的平均计数精度达到94.53%,平均相对误差为5.47%,对比已有麦穗小穗自动计数方法,计数精度显著提高,这对于小麦在线产量预估具有重要意义。  相似文献   

3.
田间麦穗计数因主要依靠人工而存在耗时长、成本高等问题,为提高麦穗计数的效率和准确性,提出基于人群计数卷积神经网络的麦穗计数方法,在图像基础上进行麦穗数量自动化计数.试验改进了现有人群计数模型中的多列卷积神经网络MCNN和空洞卷积神经网络CSRNet,并对MCNN和CSRNet进行融合,建立了多列卷积神经网络MCSRNet.测试结果表明:MCSRNet网络对麦穗的预测准确率可以达到92.4%,较MC-NN和CSRNet分别提高1.0%和4.0%,且训练迭代次数分别减少39次和5次.另基于独立数据集进行了测试,MCSRNet网络平均准确率为81.9%,较MCNN和CSRNet分别提高了0.4%和0.7%.MCSRNet的麦穗计数结果R2为0.80,优于MCNN和CSRNet.以上研究结果表明,MCSRNet网络有较高的麦穗计数准确率,同时有较快的训练速度,可为后续基于图像的小麦产量预测提供技术方法.  相似文献   

4.
基于YOLOv3网络的小麦麦穗检测及计数   总被引:2,自引:0,他引:2  
小麦(Triticum aestivum L.)麦穗检测及计数对小麦产量估计及育种至关重要,但传统小麦麦穗数量统计都是基于人工统计的方法或遥感预测等方法,效率低且准确率差。为解决上述问题,提出了基于YOLOv3的深度神经网络小麦检测方法。结果表明,YOLOv3在3种常见的小麦品种上检测平均精度mAP值为67.81%,麦穗计数准确率为93%,该方法可快速高效地检测特定标注框中的小麦麦穗。  相似文献   

5.
基于深度残差网络的麦穗回归计数方法   总被引:2,自引:0,他引:2  
单位面积的穗数是估算小麦产量的重要指标,针对传统麦穗计数方法效率低、主观性高等问题,将基于深度残差网络的密度回归模型引入麦穗的计数领域,建立原始图片与密度图的对应关系,以密度图像素值总和确定图像中麦穗数量。对ResNet34网络进行改进,提出了ResNet-16模型,实现端对端的麦穗计数。针对ResNet34网络复杂度高的特点,ResNet-16增加了残差块的宽度,减少了ResNet34网络的深度;为了避免真值密度图的精度误差以及梯度下降过快,引入了矫正因子δ和膨胀因子K。结果表明:改进后的ResNet-16模型能够取得更好的预测精度,平均绝对误差为2.50,均方根误差为3.27,相关系数R~2为0.973,计数准确率达到94%,较MCNN计数模型精度提高了6%,可以实现高效、快速的麦穗计数。利用基于深度残差网络的回归计数模型为麦穗计数提供了一种新的计数方式。  相似文献   

6.
针对准确识别小麦常见病害的需要,提出了一种基于卷积神经网络的小麦病害识别方法。该方法首先以小麦病害图片资料为基础,利用中值滤波法、直方图阈值法等对图像进行去背景、去噪、病斑分割等预处理形成样本库,然后利用卷积神经网络构建一个具有五层结构的深度学习模型进行样本学习,并利用随机梯度下降法进行学习过程控制,最后以获取的特征集对小麦图片进行病害识别,并形成一个在线识别系统。在泰安市4样点的试验结果表明,利用该方法可以有效实现对小麦常见病害——纹枯病、条锈病、叶锈病、秆锈病、赤霉病和白粉病的识别,综合识别率可达99%以上,可以应用于实际生产管理。  相似文献   

7.
小麦是重要的粮食作物之一,针对人工田间麦穗计数及产量预测效率低的问题,基于深度学习提出了一种高分辨率的小密集麦穗实时检测方法。对麦穗图像数据集进行图像分割、标注、增强预处理,基于Tensorflow搭建YOLOv4网络模型,调整改进后对其进行迁移学习;与YOLOv3、YOLOv4-tiny、Faster R-CNN训练模型进行对比,对改进模型的实用性与局限性进行分析;重点分析影响麦穗检测模型性能的关键因素。通过图像分割的方式,证明了通过改变图像分辨率确定麦穗所占图像最优像素比,可以提高前景与背景差异,对小密集麦穗有显著效果。通过对改进模型的测试,表明该模型检测精度高,鲁棒性强。不同分辨率、不同品种、不同时期的麦穗图像均类平均精度(mAP)为93.7%,单张图片的检测速度为52帧·s-1,满足了麦穗的高精度实时检测。该研究结果为田间麦穗计数以及产量预测提供技术支持。  相似文献   

8.
基于机器视觉的果园成熟柑橘快速识别及产量预估研究   总被引:1,自引:0,他引:1  
【目的】提供一种快速、准确的自然环境下成熟柑橘的识别及计数方法,解决传统的通过人工 采样的方法进行产量预估带来的成本高、时间长和精度低的不足,并为以后对柑橘进行自动采摘打下基础。 【方法】应用 RGB 相机采集柑橘园果树图像,并通过转换到 Lab 颜色空间,对与背景颜色有明显区别的柑 橘区分采用“a”分量,然后基于霍夫圆变换法应用 MATLAB 软件对剔除背景的柑橘进行计数,实现对柑橘 产量的预估。【结果】该图像处理方法与传统的水果与背景分离方法相比更简单快速,果实识别正确率达 94.01%,产量预估正确率达 96.58%,平均识别时间 1.03 s。选取 10 棵树共 20 个图片进行产量预估,将该算 法得到的柑橘数量与通过人眼计数得到的结果进行比较,其相关系数 R2 为 0.9879。【结论】该算法简单快速, 能精确实现水果的快速自动识别及产量预估,对果实的重叠性、果实遮挡有较好的鲁棒性,促进了机器学习 在现代农业的应用,具有较高的理论和实践意义,推动了果园智慧农业进一步发展。  相似文献   

9.
[目的]小麦麦穗表型获取涉及麦穗到籽粒不同几何尺度的参数精确测量,本文针对麦穗籽粒图像分割粘连现象,研究达到像素级别的精准分割算法,并基于该方法给出籽粒的基本几何参数。[方法]田间随机采集小麦麦穗,对采集的麦穗标本获取表型信息并采集图像,进行数据增广和标注,构建1个包括深度残差网络(deep residual network,Res Net)、区域建议网络(region proposal networks,RPN)和全卷积网络(fully convolutional networks,FCN)的实例分割算法Mask R-CNN,对训练集图片进行迭代训练获得模型。[结果]测试集测量结果表明,在测试麦粒上获得的籽粒像素测量平均精度(averageprecision,AP)值为0.85,F_1(F_1-measure)值为0. 830,对麦穗长度测量穗长的平均绝对误差为3. 30 mm,平均相对误差为3.40%,宽度测量的平均绝对误差为0.72 mm,平均相对误差为4.10%,综合测量误差为3.75%,试验结果显著优于最大类间方差法(OTSU)以及全卷积网络。通过对特征提取网络层数的修改在处理速度上达到4.26 FPS(frames per second),对比FCN处理速度提升了8.5倍。[结论]利用Mask R-CNN分割方法得到1个对整株麦穗和单个籽粒进行目标定位、目标检测和实例分割为一体的端到端、像素级的分割模型,可以对麦穗及部分籽粒进行精确的几何表型测量。  相似文献   

10.
基于小麦穗部小穗图像分割的籽粒计数方法   总被引:2,自引:0,他引:2  
[目的]小麦穗部小穗数及籽粒数能够直接反映小麦产量,也是小麦穗表型研究中2个非常重要的参数。[方法]为了快速测量这2个参数,针对小麦穗部正视图像,提出了一种基于图像处理技术的小麦小穗抛物线分割方法,并实现了小穗数及籽粒数的同步识别计数。首先采用图像预处理算法获得麦穗二值图像,然后将二值图像沿穗轴方向的像素按行求和,根据行像素求和曲线图中波峰波谷确定所需要的小穗3个位置点,由小穗3个位置点在二值图像上确定三点拟合抛物线,最后运用抛物线位置分割出各小穗,同时通过阈值法确定各小穗面积值与其籽粒数之间的关系。[结果]使用3个品种小麦穗图像对小穗数及籽粒数识别方法进行验证,结果表明:采用该方法 3个品种小麦穗部小穗数识别的平均零误差率为68.16%,平均绝对误差为0.46,平均相对误差为2.99%,对比已有文献识别小穗数方法,识别精度显著提高;3个品种小麦穗部籽粒数识别的平均绝对误差为2.11,平均相对误差为5.62%;3个品种单株麦穗平均测量时间为7.99 s。[结论]运用本方法可以快速高精度地对小麦穗部小穗数及籽粒数进行自动计数。  相似文献   

11.
马娜  郭嘉欣 《农学学报》2023,13(2):60-66
快速、及时和准确的发现小麦病害对提高小麦产量具有重要作用。以小麦叶片白粉病、条锈病和叶锈病3种病害为研究对象,提出了基于LM神经网络的小麦叶片病害识别模型。首先采用K-means算法分割小麦叶片病斑区域,提取小麦病斑区域的颜色特征和纹理特征,构建数据集。然后建立LM神经网络小麦叶片病害识别模型,输入数据进行识别。基于颜色和纹理特征的小麦叶片病害识别率为95.3%。在小样本情况下,利用LM神经网络算法能够快速、准确的识别小麦病害叶片。  相似文献   

12.
基于超像素分割的田间小麦穗数统计方法   总被引:1,自引:0,他引:1  
【目的】 小麦穗数是产量构成的重要因素。通过图像处理技术快速准确地统计小麦穗数,为作物长势监测和产量估测提供重要依据。【方法】 本研究以经氮肥梯度处理后不同长势的小麦为研究对象,首先,通过简单线性迭代聚类算法(simple linear iterative cluster,SLIC)对田间小麦图像进行超像素分割的预处理;提取并分析图像的部分颜色特征参数,选择适宜的颜色特征参数训练分类器;选择准确率最高的分类器对图像进行分类处理,识别麦穗。其次,对麦穗识别结果进行二值化;经腐蚀、膨胀等一系列形态学计算提取麦穗主体并进行区域统计;提取麦穗骨架,检测骨架角点数,结合角点数与区域统计结果计算小麦穗数;最后,通过线性回归分析方法验证了无氮(0)、低氮(1/2常规施氮量)、正常氮(常规施氮量)、高氮(2倍的常规施氮量)4个氮水平麦穗统计结果。【结果】 (1)利用超绿值(Eg)和归一化红绿指数(Dgr)作为分类特征可以有效地识别麦穗、土壤和叶片;(2)相较于直接基于像素进行图像处理,经超像素分割处理后麦穗识别结果更理想,识别出麦穗主体清晰,形态更为完整;(3)经比较,高氮水平下小麦长势较好,穗数统计准确率最高,为94.4%,无氮水平下小麦长势较差,穗数统计准确率最低,仅为81.9%;排除无氮情况后,长势较均匀的氮水平混合样本中麦穗计数准确率达到92.9%,相较于长势差异较大的混合样本准确率提高了8.3%。【结果】 在一般环境下,利用超像素和颜色特征的麦穗自动统计方法可以快速准确地对大田小麦进行穗数计算,长势过弱以及差异过大区域不推荐使用,研究结果为小麦大田估产提供了新的参考。  相似文献   

13.
基于MF-SSD卷积神经网络的玉米穗丝目标检测方法   总被引:1,自引:0,他引:1  
目的 玉米穗丝是玉米的授粉器官,生长发育状况会影响玉米的产量。为了在玉米生长状态监测和产量预测工作中实时准确识别玉米穗丝,提出一种基于多特征融合SSD (MF-SSD)卷积神经网络的玉米穗丝检测模型。方法 基于特征图对玉米穗丝进行检测,在VGG16-SSD的基础上,用MobileNet替换特征提取器,加入多层特征融合结构,得到MF-SSD网络模型;通过网络优化调整,试验了MF-SSD-cut-3、MF-SSD和MF-SSD-add-3共3种网络结构,优选出检测性能最好的网络结构用于玉米穗丝检测。基于玉米穗丝图像数据集,应用0~180°随机旋转原始图像和水平翻转、平移原始图像2种数据增广技术提升模型训练效果。对是否使用二次训练策略和是否使用Focal loss解决样本不平衡问题进行了试验,并对比分析Loss的下降过程。结果 通过加入多层特征融合结构对SSD模型改进后能够提高网络的检测能力,提升识别速度。与VGG16-SSD相比,MF-SSD在交并比指标方面的平均精度提高7.2%,对玉米穗丝小目标检测的平均召回率提高19.6%,检测速度最高能提升18.7%。在存储空间和运行时间有较高要求的嵌入式环境下,MF-SSD-cut-3模型在满足检测效果的前提下,以较小的空间代价获得了相对较短的运行时间;在不考虑空间和时间因素的情况下,MF-SSD模型获得更好的检测效果。二次训练策略提高了网络的收敛速度和模型的稳定性;Focal loss有效解决了SSD算法中正负样本数量不平衡问题,使网络模型的训练更容易收敛。结论 MF-SSD模型对小目标的检测能力能满足农业生产中对玉米穗丝的实时检测需要,可以用于玉米生长状态的自动监控和产量的精准预测。  相似文献   

14.
Wheat field seedling density has a significant impact on the yield and quality of grains. Accurate and timely estimates of wheat field seedling density can guide cultivation to ensure high yield. The objective of this study was to develop an image-processing based, automatic counting method for wheat field seedlings, to investigate the principle of automatic counting of wheat emergence in the field, and to validate the newly developed method in various conditions. Digital images of the wheat fields at seedling stages with five cultivars and five seedling densities were acquired directly from above the fields. The wheat seedlings information was extracted from the background using excessive green and Otsu’s method. By analyzing the characteristic parameters of the overlapping regions (Overlapping region is a number of overlapping wheat seedlings in the image) of the fields, a chain code-based skeleton optimization method and corresponding equation were established for automatic counting of wheat seedlings in the overlapping regions. The results showed that the newly developed method can effectively count the number of wheat seedlings, with an average accuracy rate of 89.94 % and a highest accuracy rate of 99.21 %. The results also indicated that the accuracy of counting was not affected by different cultivars. However, the seedling density had significant impact on the counting accuracy (P < 0.05). When the seedling density was between 120 × 104 and 240 × 104 ha?1, high counting accuracy (>92 %) could be obtained. The study demonstrated that the newly developed method is reliable for automatic wheat seedlings counting, and also provides a theoretical perspective for automatic seedling counting in the wheat field.  相似文献   

15.
Grain number is crucial for analysis of yield components and assessment of effects of cultivation measures. The grain number per spike and thousand-grain weight can be measured by counting grains manually, but it is time-consuming, tedious and error-prone. Previous image processing algorithms cannot work well with different backgrounds and different sizes. This study used deep learning methods to resolve the limitations of traditional image processing algorithms. Wheat grain image datasets were collected in the scenarios of three varieties, six background and two image acquisition devices with different heights, angles and grain numbers, 1 748 images in total. All images were processed through color space conversion, image flipping and rotation. The grain was manually annotated, and the datasets were divided into training set, validation set and test set. We used the TensorFlow framework to construct the Faster Region-based Convolutional Neural Network Model. Using the transfer learning method, we optimized the wheat grain detection and enumeration model. The total loss of the model was less than 0.5 and the mean average precision was 0.91. Compared with previous grain counting algorithms, the grain counting error rate of this model was less than 3% and the running time was less than 2 s. The model can be effectively applied under a variety of backgrounds, image sizes, grain sizes, shooting angles, and shooting heights, as well as different levels of grain crowding. It constitutes an effective detection and enumeration tool for wheat grain. This study provides a reference for further grain testing and enumeration applications.  相似文献   

16.
Water productivity (WP) is a key element of agricultural water management in agricultural irrigated regions. The objectives of this study were: (i) to estimate biomass of winter wheat using spectral indices; (ii) integrate the estimation of biomass data with the AquaCrop model using a lookup table for higher accuracy biomass simulation; (iii) show estimation accuracy of the data assimilation method in yield and WP. Spectral variables and concurrent biomass, yield and WP of samples were acquired at the Xiaotangshan experimental site in Beijing, China, during the 2008/2009, 2009/2010, 2010/2011 and 2011/2012 winter wheat growing seasons. The results showed that all spectral indices had a highly significant relationship with biomass, especially normalized difference matter index, with R2 and RMSE values of 0.84 and 1.43 t/ha, respectively. Simulation of biomass and yield by the AquaCrop model were in good agreement with the measured biomass and yield of winter wheat. The results showed that the data assimilation method (R2 = 0.79 and RMSE = 0.12 kg/m3) could be used to estimate WP. The result indicated that the AquaCrop model could be used to estimate yield and WP with the aid of remote sensing for improving agricultural water resources management.  相似文献   

17.
粮食产量的估测对制定粮食政策和调整种植结构具有重要的意义。本研究以北京市为例,利用2013年4月30日、5月12日和5月29日三期冬小麦抽穗、灌浆时期的HJ小卫星NDVI数据,结合北京市实产地块数据建立了北京市冬小麦估产回归模型,并对北京市各区县和北京全市的冬小麦单产进行了估算。结果显示:分区县地块回归的北京市冬小麦主产区大兴、房山、通州和顺义的小麦单产分别为5148.96 kg/hm2、4849.30 kg/hm2、5350.64kg/hm2和5108.84 kg/hm2,P值分别为0.000、0.000、0.000和0.001;北京市全市的冬小麦单产为5049.24 kg/hm2,精度验证的结果显示实测单产和预测单产具有良好的对应关系,其R2=0.92,RE=2.18%,RMSE=154.61 kg/hm2。以上研究结果表明利用HJ小卫星的NDVI数据可以快速、准确的估算北京市及其各区县的冬小麦单产。  相似文献   

18.
基于RBFNN的农业环境无线传感器网络节点故障诊断方法   总被引:1,自引:1,他引:0  
农业环境下无线传感器网络节点的故障率比其他民用领域的故障率要高。通过采集农业环境下无线传感器网络节点所采集的数据,并建立RBF神经网络故障诊断模型,结果表明,该模型能够比较好地基于数据对故障无线传感器网络节点进行识别。  相似文献   

19.
基于BP神经网络和支持向量机的农用地分等方法研究   总被引:1,自引:0,他引:1  
为建立农用地(耕地)质量评价模型,客观准确地进行农用地(耕地)分等,减少现行农用地分等方法中的人为因素影响,提高农用地分等的精度。以福建省长泰县丘陵山地区为实证研究区,通过无监督网络——自组织特征映射网络(SOM)筛选出2 602组典型样本,分别进行有监督网络——BP神经网络和支持向量机(SVM)的学习训练,将分等指标作为输入变量,以农用地自然质量等指数和等别作为输出变量,分别建立BP神经网络农用地分等模型与SVM农用地分等模型并对其精度进行分析。BP神经网络模型的评价正确率为89%,精度较高;支持向量机(SVM)模型的评价结果正确率为99%,达到高精度等级。2种模型均能满足农用地分等的精度要求,但SVM模型较BP神经网络效果更好,更适合应用于农用地分等工作。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号