首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have detected dozens of previously unknown, moderate earthquakes beneath large glaciers. The seismic radiation from these earthquakes is depleted at high frequencies, explaining their nondetection by traditional methods. Inverse modeling of the long-period seismic waveforms from the best-recorded earthquake, in southern Alaska, shows that the seismic source is well represented by stick-slip, downhill sliding of a glacial ice mass. The duration of sliding in the Alaska earthquake is 30 to 60 seconds, about 15 to 30 times longer than for a regular tectonic earthquake of similar magnitude.  相似文献   

2.
California earthquakes: why only shallow focus?   总被引:1,自引:0,他引:1  
Frictional sliding on sawcuts and faults in laboratory samples of granite and gabbro is markedly temperature-dependent. At pressures from 1 to 5 kilobars, stick-slip gave way to stable sliding as temperature was increased from 200 to 500 degrees Celsius. Increased temperature with depth could thus cause the abrupt disappearance of earthquakes noted at shallow depths in California.  相似文献   

3.
At a confining pressure of a few kilobars, deformation of many sedimentary rocks, altered mafic rocks, porous volcanic rocks, and sand is ductile, in that instabilities leading to audible elastic shocks are absent. At pressures of 7 to 10 kilobars, however, unstable faulting and stick-slip in certain of these rocks was observed. This high pressure-low temperature instability might be responsible for earthquakes in deeply buried sedimentary or volcanic sequences.  相似文献   

4.
Stick-slip, or interrupted, motion rather than smooth uninterrupted motion occurs in many different phenomena such as friction, fluid flow, material fracture and wear, sound generation, and sensory "texture." During stick-slip, a system is believed to undergo transitions between a static (solid-like) state and a kinetic (liquid-like) state. The stick-slip motion between various types of pretreated surfaces was measured, and a second, much more kinetic state that exhibits ultra-low friction was found. Transitions to and from this super-kinetic state also give rise to stick-slip motion but are fundamentally different from conventional static-kinetic transitions. The results here suggest practical conditions for the control of unwanted stick-slip and the attainment of ultra-low friction.  相似文献   

5.
Molecular dynamics simulations of atomically thin, fluid films confined between two solid plates are described. For a broad range of parameters, a generic stick-slip motion is observed, consistent with the results of recent boundary lubrication experiments. Static plates induce crystalline order in the film. Stick-slip motion involves periodic shear-melting transitions and recrystllization of the film. Uniform motion occurs at high velocities where the film no longer has time to order. These results indicate that the origin of stick-slip motion is thermodynamic instability of the sliding state, rather than a dynamic instability as usually assumed.  相似文献   

6.
A model for a seismic computerized alert network   总被引:1,自引:0,他引:1  
In large earthquakes, damaging ground motions may occur at large epicentral distances. Because of the relatively slow speed of seismic waves, it is possible to construct a system to provide short-term warning (as much as several tens of seconds) of imminent strong ground motions from major earthquakes. Automated safety responses could be triggered by users after receiving estimates of the arrival time and strength of shaking expected at an individual site. Although warning times are likely to be short for areas greatly damaged by relatively numerous earthquakes of moderate size, large areas that experience very strong shaking during great earthquakes would receive longer warning times.  相似文献   

7.
Wyss M  Wiemer S 《Science (New York, N.Y.)》2000,290(5495):1334-1338
The Landers earthquake in June 1992 redistributed stress in southern California, shutting off the production of small earthquakes in some regions while increasing the seismicity in neighboring regions, up to the present. This earthquake also changed the ratio of small to large events in favor of more small earthquakes within about 100 kilometers of the epicenter. This implies that the probabilistic estimate for future earthquakes in southern California changed because of the Landers earthquake. The location of the strongest increase in probability for large earthquakes in southern California was the volume that subsequently produced the largest slip in the magnitude 7.1 Hector Mine earthquake of October 1999.  相似文献   

8.
Some large earthquakes display low-frequency seismic anomalies that are best explained by episodes of slow, smooth deformation immediately before their high-frequency origin times. Analysis of the low-frequency spectra of 107 shallow-focus earthquakes revealed 20 events that had slow precursors (95 percent confidence level); 19 were slow earthquakes associated with the ocean ridge-transform system, and 1 was a slow earthquake on an intracontinental transform fault in the East African Rift system. These anomalous earthquakes appear to be compound events, each comprising one or more ordinary (fast) ruptures in the shallow seismogenic zone initiated by a precursory slow event in the adjacent or subjacent lithosphere.  相似文献   

9.
An apparent correlation between nuclear explosions and earthquakes has been reported for the events between September 1961 and September 1966. When data from the events between September 1966 and December 1968 are examined, this correlation disappears. No relationship between the size of the nuclear explosions and the number of distant earthquakes is apparent in the data.  相似文献   

10.
We have identified three groups of deep earthquakes showing nearly identical waveforms in the Tonga slab. Relocation with a cross-correlation method shows that each cluster is composed of 10 to 30 earthquakes along a plane 10 to 30 kilometers in length. Some of the earthquakes are colocated, demonstrating repeated rupture of the same fault, and one pair of events shows identical rupture complexity, suggesting that the temporal and spatial rupture pattern was repeated. Recurrence intervals show an inverse time distribution, indicating a strong temporal control over fault reactivation. Runaway thermal shear instabilities may explain temporally clustered earthquakes with similar waveforms located along slip zones weakened by shear heating. Earthquake doublets that occur within a few hours are consistent with events recurring before the thermal energy of the initial rupture can diffuse away.  相似文献   

11.
Far too few moderate earthquakes have occurred within the Los Angeles, California, metropolitan region during the 200-year-long historic period to account for observed strain accumulation, indicating that the historic era represents either a lull between clusters of moderate earthquakes or part of a centuries-long interseismic period between much larger (moment magnitude, M(w), 7.2 to 7.6) events. Geologic slip rates and relations between moment magnitude, average coseismic slip, and rupture area show that either of these hypotheses is possible, but that the latter is the more plausible of the two. The average time between M(w) 7.2 to 7.6 earthquakes from a combination of six fault systems within the metropolitan area was estimated to be about 140 years.  相似文献   

12.
Double seismic zone for deep earthquakes in the izu-bonin subduction zone   总被引:1,自引:0,他引:1  
A double seismic zone for deep earthquakes was found in the Izu-Bonin region. An analysis of SP-converted phases confirms that the deep seismic zone consists of two layers separated by approximately 20 kilometers. Numerical modeling of the thermal structure implies that the hypocenters are located along isotherms of 500 degrees to 550 degrees C, which is consistent with the hypothesis that deep earthquakes result from the phase transition of metastable olivine to a high-pressure phase in the subducting slab.  相似文献   

13.
Chen WP  Yang Z 《Science (New York, N.Y.)》2004,304(5679):1949-1952
Eleven intracontinental earthquakes, with magnitudes ranging from 4.9 to 6, occurred in the mantle beneath the western Himalayan syntaxis, the western Kunlun Mountains, and southern Tibet (near Xigaze) between 1963 and 1999. High-resolution seismic waveforms show that some focal depths exceeded 100 kilometers, indicating that these earthquakes occurred in the mantle portion of the lithosphere, even though the crust has been thickened there. The occurrence of earthquakes in the mantle beneath continental regions where the subduction of oceanic lithosphere ceased tens of millions years ago indicates that the mantle lithosphere is sufficiently strong to accumulate elastic strain.  相似文献   

14.
We present a time-dependent model for the generation of repeated intraplate earthquakes that incorporates a weak lower crustal zone within an elastic lithosphere. Relaxation of this weak zone after tectonic perturbations transfers stress to the overlying crust, generating a sequence of earthquakes that continues until the zone fully relaxes. Simulations predict large (5 to 10 meters) slip events with recurrence intervals of 250 to 4000 years and cumulative offsets of about 100 meters, depending on material parameters and far-field stress magnitude. Most are consistent with earthquake magnitude, coseismic slip, recurrence intervals, cumulative offset, and surface deformation rates in the New Madrid Seismic Zone. Computed interseismic strain rates may not be detectable with available geodetic data, implying that low observed rates of strain accumulation cannot be used to rule out future damaging earthquakes.  相似文献   

15.
The Sierra Madre fault, along the southern flank of the San Gabriel Mountains in the Los Angeles region, has failed in magnitude 7.2 to 7.6 events at least twice in the past 15,000 years. Restoration of slip on the fault indicated a minimum of about 4.0 meters of slip from the most recent earthquake and suggests a total cumulative slip of about 10.5 meters for the past two prehistoric earthquakes. Large surface displacements and strong ground motions resulting from greater than magnitude 7 earthquakes within the Los Angeles region are not yet considered in most seismic hazard and risk assessments.  相似文献   

16.
The potential for earthquake early warning in southern California   总被引:11,自引:0,他引:11  
Earthquake mitigation efforts in the United States currently use long-term probabilistic hazard assessments and rapid post-earthquake notification to reduce the potential damage of earthquakes. Here we present the seismological design for and demonstrate the feasibility of a short-term hazard warning system. Using data from past earthquakes, we show that our Earthquake Alarm System (ElarmS) could, with current TriNet instrumentation, issue a warning a few to tens of seconds ahead of damaging ground motion. The system uses the frequency content of the P-wave arrival to determine earthquake magnitude, an approach that allows magnitude determination before any damaging ground motion occurs.  相似文献   

17.
The maximum size of thrust earthquakes at the world's subduction zones appears to be limited by anelastic deformation of the overriding plate. Anelastic strain in weak forearcs and roughness of the plate interface produced by faults cutting the forearc may limit the size of thrust earthquakes by inhibiting the buildup of elastic strain energy or slip propagation or both. Recently discovered active strike-slip faults in the submarine forearc of the Cascadia subduction zone show that the upper plate there deforms rapidly in response to arc-parallel shear. Thus, Cascadia, as a result of its weak, deforming upper plate, may be the type of subduction zone at which great (moment magnitude approximately 9) thrust earthquakes do not occur.  相似文献   

18.
Seismic evidence for an earthquake nucleation phase   总被引:4,自引:0,他引:4  
Near-source observations show that earthquakes initiate with a distinctive seismic nucleation phase that is characterized by a low rate of moment release relative to the rest of the event. This phase was observed for the 30 earthquakes having moment magnitudes 2.6 to 8.1, and the size and duration of this phase scale with the eventual size of the earthquake. During the nucleation phase, moment release was irregular and appears to have been confined to a limited region of the fault. It was characteristically followed by quadratic growth in the moment rate as rupture began to propagate away from the nucleation zone. These observations suggest that the nucleation process exerts a strong influence on the size of the eventual earthquake.  相似文献   

19.
A destructive earthquake that occurred in 1886 near Charleston, South Carolina, was associated with widespread liquefaction of shallow sand structures and their extravasation to the surface. Several seismically induced paleoliquefaction structures preserved within the shallow sediments in the meizoseismal area of the 1886 event were identified. Field evidence and radiocarbon dates suggest that at least two earthquakes of magnitudes greater than 6.2 preceded the 1886 event in the past 3000 to 3700 years. The evidence yielded an initial estimate of about 1500 to 1800 years for the maximum recurrence of destructive, intraplate earthquakes in the Charleston region.  相似文献   

20.
Earthquakes with non--double-couple mechanisms   总被引:2,自引:0,他引:2  
Seismological observations confirm that the pattern of seismic waves from some earthquakes cannot be produced by slip along a planar fault surface. More than one physical mechanism is required to explain the observed varieties of these non-double-couple earthquakes. The simplest explanation is that some earthquakes are complex, with stress released on two or more suitably oriented, nonparallel fault surfaces. However, some shallow earthquakes in volcanic and geothermal areas require other explanations. Current research focuses on whether fault complexity explains most observed non-double-couple earthquakes and to what extent ordinary earthquakes have non-double-couple components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号