首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
采用不同曝气位置的上向流生物滤池处理对虾养殖污水,连续运行30d,分析出水水质,并观察系统运行情况和装置污染状况。考察了对虾养殖污水中化学需氧量、氨氮、硝酸盐氮、亚硝酸盐氮、无机氮及活性磷酸盐6项指标的去除效果。结果表明:从养殖污水主要污染物指标的去除效果上看,中下部曝气生物滤池(MUBAF)要优于底部曝气生物滤池(BUBAF)。在系统进水化学需氧量质量浓度为7.62~8.20mg·L-1,氨氮质量浓度为0.62~0.65mg·L-1,硝酸盐氮质量浓度为0.54~0.59mg·L-1,亚硝酸盐氮质量浓度为0.23~0.27mg·L-1,无机氮质量浓度为1.40~1.47mg·L-1,活性磷酸盐质量浓度为0.24~0.29mg·L-1,水温为25℃~30℃时,中下部曝气生物滤池对养殖污水中6项指标的去除率分别为45.2%、88.9%、58.5%、78.8%、75.3%和25.1%。可见,对氨氮的去除效果最佳,亚硝酸盐氮和无机氮次之,化学需氧量和硝酸盐氮的去除效果较差,活性磷酸盐去除率最低。总体而言,曝气生物滤池在水产养殖污水应用中处理效果明显,具有可行性和实用性。  相似文献   

2.
以紫背天葵菜为种植植物,研究植物人工快渗系统对生活污水污染物的去除效果。结果表明,植物人工快渗系统对COD、氨氮和总磷平均去除率分别为85.8%、95.3%和94.8%,COD、氨氮的出水浓度均能满足《城镇污水处理厂污染物排放标准》(GB18918—2002)一级A排放标准。出水中总磷的浓度能满足一级B标准。植物人工快渗系统对总氮平均去除率为67.6%。总氮、总磷较常规人工快渗系统去除率明显提高。植物的吸收和根系的截留是总氮总磷去除率显著增加的主要因素。植物种植为人工快渗系统提供了新的思路,不仅能提高污染物去除效率,还能增加环境美观度。  相似文献   

3.
9种水生植物对模拟污水中氮、磷的生物净化效果   总被引:2,自引:0,他引:2  
通过9种水生植物在模拟污水中的培养试验,研究其对模拟污水中氨氮、总氮、总磷的去除效果,从中筛选出适用于治理城市污水的水生植物.结果表明,不同浓度下随着培养时间的延长,9种水生植物对氨氮、总氮、总磷的去除率逐渐增加.低浓度下,空心莲子草对氨氮的去除率最高(53.79%),荷花对总氮的去除率最高(48.75%),凤眼莲对总磷的去除率最高(70.10%);中浓度下,凤眼莲对氨氮的去除率最高(61.39%),茭白对总氮的去除率最高(52.23%),凤眼莲对总磷的去除率最高(80.15%);高浓度下,茭白对氨氮的去除率最高(55.70%),凤眼莲对总氮和总磷的去除率均最高(分别为40.42%和69.58%).可见,凤眼莲、空心莲子草、茭白3种植物对氮磷具有较好的去除效果,是较好的湿地植物.  相似文献   

4.
以河南省信阳市郝堂村生活污水为处理对象,构建2个潜流人工湿地生态净化系统。于2014年6月分别栽植2组不同的湿地植物。通过2016、2017年2、6、10月对潜流人工湿地进水口、出水口的水质进行监测,研究了潜流人工湿地对生活污水的处理效果和配置不同植物对污染物的去除效果。预处理对化学需氧量(COD)、氨氮、总磷和总氮的去除率分别是34.46%、50.02%、34.69%、12.89%。栽种引种植物美人蕉(Canna indica L)、香蒲(Typha orientalis Presl)、再力花(Thalia dealbata Fraser)的潜流人工湿地对COD、氨氮、总磷和总氮的去除率分别为43.90%、41.80%、51.90%和66.30%;栽种乡土树种鬼针草(Bidens pilosa L)、芦苇(Phragmites communis)、菖蒲(Acorus calamus L)的潜流人工湿地对COD、氨氮、总磷和总氮的去除率分别为52.80%、49.90%、59.70%和73.40%。研究结果表明,潜流人工湿地对生活污水中的污染物去除效果较好,预处理和湿地基质的吸附降解作用是潜流人工湿地处理污水的主要途径,栽种乡土湿地植物的潜流人工湿地污染物去除效果更好。  相似文献   

5.
水生植物对螃蟹养殖水体原位修复及其强化净化效果   总被引:1,自引:0,他引:1  
为研究水生植物对养殖水体原位修复及逐级强化净化效果,以野外实地监测的方式,在螃蟹池塘中设置不同生物量的伊乐藻和水花生进行原位修复试验,并设置养殖池塘尾水逐级经过高密度的水生植物进行强化净化试验,并分析水体理化指标。结果显示:原位修复池塘中,伊乐藻和水花生对池塘养殖水体中氨氮、总氮、总磷的最大去除率分别为68.52%、67.65%、59.26%和66.26%、68.95%、50.00%;且植物平均生物量越大,氮、磷去除率越高。单位生物量的水花生对总氮、总磷的平均去除率都略高于单位生物量的伊乐藻;2种植物对总氮的平均去除率间差异极显著,而2种植物对总磷的平均去除率间差异显著。养殖尾水经强化净化塘处理后,水体的悬浮物、化学需氧量、氨氮、总氮和总磷浓度均下降,其最大去除率分别为65.09%、54.58%、57.61%、69.18%和86.49%,试验结束时净化塘出水可达到《太湖流域池塘养殖水排放标准》所规定的一级标准。  相似文献   

6.
在大量试验数据的基础上,剖析了水平流-垂直流复合人工湿地的最佳工艺参数,探讨了在不同季节、不同停留时间及不同回流比条件下此复合系统对污水氮的净化效率。结果表明,进水的氨氮浓度在24~143mg·L-1之间,氨氮的去除率为24.83%~98.41%;进水的平均总氮浓度在28~187mg·L~(-1)之间变化,系统对总氮的去除率为10.63%~62.33%,氨氮的去除效果明显好于总氮的去除效果。在同一季节内,复合系统对总氮和氨氮的去除效率随着停留时间的延长及回流比的增加都有所提高。  相似文献   

7.
设计一种微生物与水生植物耦合,同时添加生物膜载体的新型生态浮岛,并探索其对水质改善的作用。结果表明,生态浮岛试验区水体氨氮、总氮和总磷去除率分别为22.7%、19.2%和18.0%,但对水体硝态氮去除效果不佳,浮岛内不同植物浮岛单元硝态氮浓度增幅4%~18%。不同植物对水体净化效果不同:刺果泽泻、紫芋、千屈菜、芦竹、风车草、菰、菖蒲对氨氮去除率达到20%以上;刺果泽泻、紫芋、梭鱼草、风车草、千屈菜、菰、芦竹和水葱对总氮去除率达10%以上;刺果泽泻、菰、水葱、紫芋对总磷去除率达15%以上。添加微纳米固定化净水菌剂(W13)可促进水体总氮、总磷的去除,但对总磷去除率的促进效果(-0.2百分点~8.5百分点)不及总氮(4百分点~15百分点)。  相似文献   

8.
杨明辉  姚俊芹  张健  李革 《安徽农业科学》2012,40(11):6770-6772
[目的]研究曝气生物滤池处理城市污水的效果。[方法]采用曝气生物滤池工艺建成雅山污水处理厂,设曝气沉砂池1组,初沉池2座,曝气生物滤池3座,气浮池3座,对该厂进出水中的CODCr、SS、氨氮、总氮、总磷等指标进行监测,并分析污水处理效果不达标的原因。[结果]CODCr的进水平均浓度为650 mg/L,出水平均值400 mg/L,平均去除率为40%;SS的进水平均值是250 mg/L,出水的平均值是230 mg/L,去除率为6%;氨氮的进水平均值为58 mg/L,出水的平均值为50 mg/L,去除率为14%。总氮的进水平均值为63mg/L,出水平均值为56 mg/L,去除率为11%。总磷的进水平均值为9 mg/L,出水平均值为5 mg/L,去除率为44%。[结论]CODCr、SS、氨氮等的去除没有达到排放标准,主要是因水力停留时间短、没有反冲洗装置、不能连续生产等因素所造成的。  相似文献   

9.
利用化学絮凝与苦草生态净化协同处理生活污水,探究不同处理工艺对生活污水中氨氮、总氮、总磷、COD去除效果的影响。结果表明,采用PAC与PAM混凝处理生活污水效果显著,PAC与PAM的最佳投加量分别为195,1.2 mg·L-1,处理方法为:投加PAC后200 r·min-1先搅拌30 s,加入PAM后继续200 r·min-1搅拌30 s,再70 r·min-1搅拌8 min。在混凝的基础上进行苦草生态净化,建议种植密度为32 g·L-1,处理8 d后,对餐饮污水中氨氮、总氮、总磷和COD的去除效果最佳;相同的种植密度处理12 d时,对洗涤污水的净化效果最好。  相似文献   

10.
水力负荷对生态槽深度处理农村生活污水的影响   总被引:2,自引:0,他引:2  
研究水力负荷对生态槽深度处理农村生活污水效果的影响。结果表明:出水溶解氧随水力负荷增大而降低,当水力负荷为52.90L·d^-1·m^-2和90.20L·d^-1·m^-2之时,出水溶解氧在3.00mg·L^-1以上;当水力负荷增至129.40L·d^-1·m^-2,溶解氧降至0.60mg·L^-1以下。水力负荷增大不利于化学需氧量的去除,当水力负荷由52.90L·d^-1·m^-2之增至90.20L·d^-1·m^-2,化学需氧量平均去除率降低16.70%。随水力负荷增大,出水氨氮、总氮和总磷均呈上升趋势,水力负荷达129.40L·d^-1·m^-2之时,出水氨氮和总磷分别升至1.34mg·L^-1和0.11mg·L^-1,仍分别可达GB3838—2002《地表水环境质量标准》Ⅳ类和Ⅲ类水体标准。但总氮尚难以达到GB3838—2002之V类水标准。  相似文献   

11.
水生植物对不同氮磷水平养殖尾水的综合净化能力比较   总被引:1,自引:0,他引:1  
为了筛选适用于不同氮磷浓度畜禽养殖尾水的生态浮岛优势物种,选取水芹、凤眼莲、鸢尾、再力花、黄菖蒲5种挺水植物和狐尾藻、伊乐藻、金鱼藻3种沉水植物,通过模拟实验考察了这8种植物在不同氮磷浓度条件下的生长特征及其对水中氨氮(NH4+-N)、总磷(TP)、COD的去除效率,并对其进行曲线回归及主成分分析,综合评价不同水生植物对畜禽养殖废水中氮磷的净化功能。结果表明:凤眼莲、再力花在较低氮磷水平(NH4+-N 80~120 mg·L-1,TP 8~16 mg·L-1)下的去除能力明显高于其他水生植物;水芹和黄菖蒲在较高氮磷水平(NH4+-N 180~220 mg·L-1,TP 30~35 mg·L-1)下的去除效果较好,并具有良好的适应能力;沉水植物中狐尾藻净化效果较好,生物量增长显著(P<0.05);凤眼莲在实验过程中虽净化能力良好,但易引发次生环境问题,应谨慎选择,因地制宜。  相似文献   

12.
为探究溶氧(Dissolved orygen,DO)控制对异养硝化-好氧反硝化(Heterotrophic nitrification-aerobic denitrification,HN-AD)菌脱氮效力的影响,本文从绿狐尾藻人工湿地底泥基质中分离出高效HN-AD菌Alcaligenes faecalis WT14,通过室内和反应器装置试验,较系统地研究了WT14的HN-AD性能和不同DO条件对其NH_4~+-N、NO_3~--N去除能力的影响,并建立两级DO控制固定床反应器,通过DO控制分析了菌株WT14对养殖废水的处理效果。氮平衡试验表明,菌株WT14具有高效的同步硝化-反硝化能力,92.10%的NH_4~+-N以气态形式被去除,4.16%的NH_4~+-N被菌株WT14同化为胞内氮,同时NH_4~+-N的存在会促进NO_3~--N的还原。DO控制试验表明,菌株WT14的NH_4~+-N和NO_3~--N去除能力与DO浓度显著相关,低DO条件会抑制其NH_4~+-N去除能力,但是会促进NO_3~--N去除能力,且符合Boltzmann模型,其脱氨脱硝活性的半数DO抑制浓度分别为2.53 mg·L~(-1)和5.40 mg·L~(-1),最大NH_4~-N去除率和NO_3~--N去除率分别为94.0%和98.4%。在两级好氧(DO 4.00±0.30 mg·L~(-1))条件下,WT14对养殖废水的NH_4~+-N、TN和COD的去除率分别为99.3%、90.5%和97.5%,存在NO_3~--N和NO_2~--N的积累,而在连续好氧(DO 4.00±0.30 mg·L~(-1))-微氧(DO 0.50±0.10mg·L~(-1))条件下,WT14对养殖废水的NH_4~+-N、TN和COD的去除率分别为99.3%、97.6%和98.2%,且无NO_3~--N和NO_2~--N的积累。研究表明,两级DO控制中连续好氧-微氧显著促进了同步异养硝化-好氧反硝化菌WT14对NO_3~--N和NO_2~--N的还原,且不影响NH_4~+-N和COD的去除,提高了TN去除率。  相似文献   

13.
A/O与SBR工艺处理猪场废水厌氧消化液对比研究   总被引:1,自引:1,他引:0       下载免费PDF全文
缺氧/好氧工艺(A/O)与序批式活性污泥法(SBR)是应用最为广泛的猪场废水厌氧消化液好氧处理工艺,但两者的处理性能孰优孰劣,目前尚无定论。基于此,本研究对比了实验室规模的A/O与SBR工艺处理猪场废水厌氧消化液的性能。结果表明:两种工艺直接处理猪场废水厌氧消化液,出水pH值下降至6以下,平均NH4+-N去除率均低于50%,但SBR的NH4+-N去除率略高于A/O。补充碱度后,4个氮负荷(0.02,0.04,0.06,0.08 kg·kg-1·d-1)下,两种工艺的NH4+-N去除率提高到99%以上,但对COD、TN和TP去除的改善不明显,并且A/O与SBR对COD、NH4+-N、TN、TP去除效果无显著差异。活性试验表明,SBR的氨氧化活性和厌氧氨氧化活性高于A/O,但是反硝化活性要显著低于A/O。Stover–Kincannon模型与试验数据拟合良好(R2>0.9),A/O和SBR对COD、TN、NH4+-N的最大去除负荷(Umax)分别为7.62、0.28、48.8 g·L-1·d-1和7.18、0.13、65.4 g·L-1·d-1,说明SBR有利于NH4+-N转化,而A/O有利于COD与TN去除。  相似文献   

14.
为优化微藻-细菌共生体系对畜禽养殖废水中碳氮磷去除的参数条件,利用响应面分析法(Response surface methodology,RSM)中的Box-Behnken中心组合设计(BBC),以接种比例、曝气量以及初始氨氮浓度为试验变量,以污染物去除率为响应值开展试验。响应面分析结果表明,对于COD去除的最佳条件为:活性污泥与微藻接种比例为6.0(m/m)、曝气量2.0 L·min~(-1)、初始氨氮浓度750 mg·L~(-1),此时COD去除率达92%以上。对于总氮(Total nitrogen,TN)的去除,当接种比例5.0(m/m)、曝气量1.5 L·min~(-1)、初始氨氮浓度750 mg·L~(-1)时,其去除率可达最大值(53%)。而对于磷酸盐的去除,当接种比例6.0(m/m)、曝气量1.5 L·min~(-1)、初始氨氮浓度600 mg·L~(-1)时,试验前96 h内便可达到100%的去除率。进一步对生物量检测发现,初始条件分别为曝气量1.5 L·min~(-1)、初始氨氮浓度900 mg·L~(-1)、接种比例4.0(m/m)或曝气量1.0 L·min~(-1)、初始氨氮浓度750 mg·L~(-1)、接种比例4.0(m/m)时,微藻生物量产量最高,可达到1.63~1.64 g·L~(-1)。研究表明,通过响应面法可以优化藻菌共生体系对畜禽养殖废水的处理工艺。对于不同的目标污染物,具有不同的最优参数组合。综合考虑各因素对各目标污染物去除效果的影响,可以选择废水处理工艺最优参数组合。通过回收在废水处理过程中生长的藻菌共生体用于后续生物质利用,可实现良好的经济价值,提高该工艺在污水深度处理中的应用前景。  相似文献   

15.
构建一种脱氮的无回流生物滤床家庭生活污水处理一体化净化槽,研究其处理效果;改变各区内的曝气形式,形成A/O/A/O的脱氮工艺,通过测定各区COD、NH+4-N、NO-3-N和TN的浓度变化,考察其处理效果。结果表明:随着净化槽各区生物滤床的加入,反应器抗冲击性增强,处理效果明显提高。但A/O/A/O系统中第二级厌氧过程因碳源不足,脱氮效果不佳,改用分段进水后,净化槽不仅运行稳定,而且取得了很好的处理效果,出水COD平均浓度12.3 mg·L~(-1),NH+4-N平均浓度2.7 mg·L~(-1),TN平均浓度13.0mg·L~(-1),均达到国标(GB 18918—2002)一级A标准。A/O/A/O生物滤床新型净化槽不仅在结构上形成一体化,而且由于生物滤床的使用,不需要污泥回流,节省能耗,通过分段进水可以实现过程脱氮。  相似文献   

16.
复合人工湿地处理低浓度畜禽养殖废水的净化效果   总被引:2,自引:0,他引:2  
为了解人工湿地对低浓度畜禽养殖废水的去除速度与净化效果,采用4级复合人工湿地以间歇进水的方式处理低浓度猪场废水,监测不同时期各级湿地进出水中TN、TP、NH_4~+-N、COD_(Cr)等污染物指标浓度的变化。结果表明,复合人工湿地进水中TN、TP、NH_4~+-N、CODCr年平均初始浓度分别为41.6、8.4、21.4、253.9 mg·L~(-1),去除率分别为94.66%、79.36%、91.04%、32.32%。其中1级湿地(芦苇-砾石垂直渗透流)对TN、TP和CODCr去除速度较快,分别为2.9、0.6、7.5 g·m~(-2)·d~(-1);2级湿地(芦苇-沸石垂直渗透流)对NH_4~+-N去除速度较快,为1.8 g·m~(-2)·d~(-1);3级湿地(芦苇-砾石水平潜流)和4级湿地(稻田水平表面流)对污染物的去除速度较低,对TN、TP、NH_4~+-N的去除速度均小于0.4 g·m~(-2)·d~(-1),对COD_(Cr)的去除速度小于2.3 g·m~(-2)·d~(-1)。污染物去除率受季节温度变化的影响较小。  相似文献   

17.
为了解北运河流域农田养分流失特征,通过模拟降雨的情况下,分析了降雨量对径流雨水中养分含量、土壤养分和泥沙流失的变化特征。结果表明,北运河地区只有在暴雨情况下产生农田径流,暴雨后,农田径流雨水中总N浓度在4.7~11.3mg·L-1,氨态氮和硝态氮占44.51%;总P浓度在0.66~1.35mg·L-1,水溶磷含量占到总磷54.08%。养分的流失以表层为主,土壤表层总氮流失比例达到29.79%,氨态氮损失率达到52.09%,硝态氮损失10.21%,表层土壤总磷含量下降达到16.48%,水溶性磷损失5.27%。农田径流泥沙中总氮含量为0.66~1.27mg·g-1,占总流失量的82.28%;总P浓度在14.73~20mg·g-1,占到总流失量的99.89%;模拟降雨后土壤大团聚体减少8.8%,而微团聚体增加9.5%。  相似文献   

18.
传统膜生物反应器是农村生活污水处理的重要工艺之一,但其存在氮磷去除效果差等问题,本文旨在探究陶瓷膜生物反应器对农村生活污水的处理效果,并提高其脱氮除磷效果。陶瓷膜-生物反应器(C-MBR)是将好氧生物反应与无机陶瓷平板膜过滤技术相结合的工艺,具有占地面积小、维护简单、排泥量少等优点。本文利用陶瓷膜代替传统膜-生物反应器中的有机膜,对C-MBR进行强化脱氮除磷工艺研究,通过优化回流比、DO、HRT等进行强化脱氮,采用粉煤灰多孔填料吸附进行强化除磷。结果表明:在进水COD和TN、NH_3-N、TP浓度分别为360.00~661.00、33.90~57.60、16.80~32.30 mg·L~(-1)和4.78~5.70 mg·L~(-1),MLSS为3000 mg·L~(-1),膜孔径为50 nm条件下,C-MBR出水对应指标平均浓度分别为34.90、22.59、1.13 mg·L~(-1)和4.57 mg·L~(-1),平均去除率分别为93.68%、47.86%、95.00%和12.32%。优化回流比至200%、DO浓度为2.00 mg·L~(-1)、好氧池HRT为4 h时,TN平均去除率显著提高,最佳可达69.39%,出水平均浓度为12.52 mg·L~(-1),且此时出水稳定、能耗低;粉煤灰多孔填料在水力负荷0.33 m~3·m~(-3)·d~(-1)条件下,对TP去除率可达90.90%,出水平均浓度为0.42 mg·L~(-1),满足一级A标准。使用1000 mg·L~(-1)的次氯酸钠水溶液,以每片膜500mL·30 min~(-1)速度对膜进行在线清洗时,跨膜压差恢复速率最快,膜污染去除效果恢复最佳。优化回流比、DO、好氧池HRT能有效强化C-MBR脱氮效果,填料吸附磷能有效强化除磷效果。本研究为农村生活污水就地处理、提高C-MBR脱氮除磷效果提供了有益参考。  相似文献   

19.
采用人工模拟实验,探讨了四种植物篱系统在不同坡度(5°、10°和20°)、不同污染物进水浓度(低、中、高)下对坡耕地农田径流污染物TN、TP、NH_3-N、TOC、COD的去除效果。植物篱系统分别是红叶石楠+小叶女贞+黑麦草(T1)、红叶石楠+小叶女贞(T2)、小叶女贞+黑麦草(T3)、红叶石楠+黑麦草(T4)。结果表明:植物篱系统对污染物的去除率均随坡度的增加而下降,TP、NH_3-N、COD尤为明显,当坡度由5°增加到20°时,TP的去除率由52.25%~76.75%降至33.68%~60.34%,NH_3-N的去除率由36.84%~68.33%降至34.30%~45.46%,COD的去除率由13.26%~38.69%降至3.15%~26.74%。除NH_3-N外,随污染物进水浓度的升高,植物篱对污染物的去除效果越明显,TP的去除率可由33.33%~60.11%升至57.06%~81.44%,TOC的去除率可由-0.84%~2.92%升至9.64%~17.69%,COD的去除率可由-14.75%~11.25%升至20.62%~42.33%。植物篱系统对TN、TP、NH_3-N、TOC、COD的去除效果显著优于裸土(对照系统),在不同坡度下去除率最高分别能由12.81%升至47.02%、34.29%升至76.75%、18.27%升至68.33%、-0.93%升至11.52%、2.31%升至38.69%,在不同污染物进水浓度下分别能由15.57%升至53.05%、37.93%升至81.44%、17.60%升至64.05%、2.92%升至17.69%、-33.40%升至11.25%。总体而言,植物篱系统平均去除效果依次为T1T4T3T2,即红叶石楠+小叶女贞+黑麦草去除效果最佳,这与三种植物的地表覆盖率高、根系发达以及在功能上相互取长补短、协同固定污染物有关。  相似文献   

20.
改性沸石制备及其同步去除农田排水氮磷研究   总被引:1,自引:1,他引:1  
为进行高浓度农田排水的应急处理,以天然斜发沸石为原料,制备能够同步吸附NH4+-N、NO-3-N和TP的组合改性沸石,并对人工模拟农田排水进行处理。结果表明:采用0.01mol L-1LaCl3改性的沸石对NH+4-N和TP具有良好的吸附效果,可在10 min内达到吸附平衡,且与Freundlich等温吸附模型拟合度较高(R2>0.99);采用0.02mol L-1溴代十六烷基吡啶(CPB)改性的沸石可同时吸附NH+4-N、NO3--N和TP,在20min内即可达到吸附平衡,其与Langmuir等温吸附模型相关度较高(R2>0.97)。这两种改性沸石的吸附过程均符合准二级动力学模型。15g L-1的CPB改性沸石与8g L-1的LaCl3改性沸石组合处理模拟农田排水,反应20min,沉淀7min后,出水NH+4-N、NO3--N和TP浓度分别为0.23、2.18mg L-1和0.015mg L-1,去除率分别为95.38%、78.21%和97.12%。研究表明组合改性沸石可快速高效地处理农田排水。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号