首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
耕作对渭北旱塬小麦-玉米轮作田土壤水分和产量的影响   总被引:2,自引:0,他引:2  
郭星宇  王浩  于琦  王瑞  王小利  李军 《中国农业科学》2021,54(14):2977-2990
【目的】探讨不同降水年型下,耕作方式对冬小麦-休闲-春玉米轮作田土壤水分和作物产量的影响,为旱区粮田降雨高效利用与耕作制度创新提供理论支撑。【方法】于2007—2019年在渭北旱塬进行长期定位保护性耕作试验,以传统翻耕(CT)为对照,设置免耕(NT)和深松(ST)2种少耕耕作方式,分析不同降水年型下耕作方式对小麦-玉米轮作田休闲期土壤蓄墒、作物产量和水分利用效率的影响。【结果】(1)降水年型、耕作方式及其互作均显著影响休闲期末期土壤贮水量和休闲期蓄墒率,其中降水年型是休闲末期土壤贮水量和休闲期蓄墒率变化的主导因素。休闲末期0—200 cm土层土壤贮水量(mm)表现为丰水年型(430.6)>欠水年型(405.9)>平水年型(381.5);NT(417.4)>ST(402.3)>CT(398.2);丰水年型NT处理休闲末期0—200 cm土层土壤贮水量最高(438.5),平水年型ST处理最低(370.2);休闲期蓄墒率(%)表现为丰水年型(27.1)>欠水年型(26.6)>平水年型(25.1);NT(27.6)>ST(26.4)>CT(25.8);欠水年型NT处理土壤蓄墒率最高(29.1),平水年型CT处理土壤蓄墒率最低(25.0)。(2)降水年型、耕作方式及其互作均显著影响冬小麦产量和水分利用效率(WUE),其中耕作方式是冬小麦产量(kg∙hm-2)和WUE(kg∙hm-2∙mm-1)变化的主导因素。冬小麦产量表现为丰水年型(4985)>欠水年型(3984);NT(4522)>ST(4468)>CT(4465);丰水年型NT处理产量最高(5033),欠水年型ST处理最低(3957);冬小麦WUE表现为丰水年型(15.4)>欠水年型(14.9);NT(16.2)>ST(15.4)>CT(14.0);丰水年型NT处理WUE最高(16.5),欠水年型CT处理最低(13.9)。(3)降水年型、耕作方式及其互作均显著影响春玉米产量和水分利用效率(WUE),其中降水年型是春玉米产量(kg∙hm-2)和WUE(kg∙hm-2∙mm-1)变化的主导因素。春玉米产量表现为丰水年型(7677)>欠水年型(6999)>平水年型(5887);NT(6900)>ST(6879)>CT(6785);丰水年型ST处理产量最高(8003),平水年型ST处理最低(5723);春玉米WUE表现为丰水年型(18.7)>欠水年型(17.5)>平水年型(14.8);NT(17.8)>ST(17.0)>CT(16.2);丰水年型ST处理WUE最高(19.3),平水年型CT处理最低(13.9)。(4)在冬小麦-休闲-春玉米轮作周期中,耕作方式显著影响作物产量和WUE。其中NT处理多年平均产量和WUE分别较CT处理提高1.6%和9.5%,ST处理多年平均产量和WUE分别较CT处理提高1.2%和3.9%。【结论】综合各降水年型下土壤水分与作物产量得出,保护性耕作可以相对高效地实现保水增产目的,其中以免耕处理蓄水与增产效应最佳。从旱作农田高产高效及长期可持续发展的角度综合考虑,推荐免耕作为黄土高原地区实现蓄水保墒及增产增收目的的耕作方式。  相似文献   

2.
不同水分处理对滴灌春小麦水分利用效率及产量的影响   总被引:1,自引:0,他引:1  
研究不同水分处理对春小麦滴灌水分在土壤中的分布状况、水分利用效率(WUE)及产量的影响。结果表明,不同水分处理对滴灌小麦土壤水分的分布有很大影响,同一土层0~20cm土壤含水率在灌溉前后具有明显的变化;0~40cm土层土壤含水率整体趋于平缓,总体表现为W1处理(150mm)〈W2处理(300mm)〈W3处理(450mm)〈W4处理(600mm);40~60cm土层距离滴灌带不同远近的土壤含水率变化不明显。W3处理的WUE最高,漫灌的WUE最低。滴灌小麦和漫灌小麦不同水分处理的产量间差异达显著水平,同一水分处理不同行之间由于灌溉量的不同也表现差异性;两品种产量均随灌水增加而增加,灌水过多而降低的趋势。  相似文献   

3.
为高效利用自然降水和灌溉水,于2011-2012年在晋南小麦-玉米两熟制地区进行大田试验,研究了不同灌水(每次灌水450 m3/hm2)、秸秆还田处理对冬小麦需水、耗水特性、水分利用效率及产量效应的影响。结果表明:不同灌水处理下土壤贮水量呈现W0W1>W2>W3;总耗水量依次为W0W3>W1>W0;产量表现为W3>W2>W1>W0;不同时期灌水WUE表现为拔节水>越冬水>灌浆水;相同灌水处理下产量呈现S>N、WUE表现为S>N。综合考虑产量、贮水量、耗水量和水分利用效率,浇冬水+拔节水秸秆还田处理是较好的节水丰产模式。  相似文献   

4.
基于DSSAT作物模型模拟了不同降水年型水分胁迫条件下的冬小麦生产潜力,对比分析不同生育期灌水对产量、WUE以及土壤蒸发量等的影响,从而确定关键灌水期;并在综合考虑产量、WUE、总灌水量、灌水次数等因素的基础上确定了不同降水年型下的最优灌溉制度。结果表明:(1) 冬小麦越冬水、返青水、拔节水、灌浆水四水中以返青水最为关键,其次为拔节水,最后为越冬水和灌浆水;当不灌返青水时,冬小麦产量和蒸腾量显著降低,土壤蒸发量显著升高;(2) 不同降水年型之间也存在显著差异,产量、WUE、作物蒸腾量等表现为丰水年略大于平水年,二者显著大于枯水年;而灌水边际效益表现为平水年>枯水年>丰水年;(3) 枯水年、平水年、丰水年的冬小麦最优灌溉制 度分别为枯水年返青期和拔节期各灌水75 mm和50 mm,平水年返青期灌水75 mm,丰水年返青期和拔节期各灌水25 mm。  相似文献   

5.
【目的】中国旱地小麦常年降水量少且分配不均,如何蓄水保墒尤其是蓄积休闲期降水提高生育期土层水分含量,以供作物生长发育需要成为当前研究的热点。论文旨在探讨不同降水年型,休闲期耕作方式对土壤水分贮备水平、小麦籽粒产量和品质指标的影响,进而为有效利用一年一作旱地小麦休闲期降水,提高小麦籽粒产量,优化籽粒品质提供理论依据。【方法】于2009-2012年连续3年在山西闻喜县开展大田试验,以运旱20410为供试品种,设置休闲期深翻(深度25-30 cm,DT)、休闲期深松(深度30-40 cm,SS)、对照(休闲期不进行任何耕作处理,CK)3个水平,随机区组设计,研究休闲期深翻、深松对旱地冬小麦0-300 cm土层水分含量、籽粒蛋白质形成的影响。【结果】休闲期耕作较对照提高播种前0-300 cm土层蓄水量,枯水年提高63-91 mm,平水年提高41-70 mm,丰水年提高54-74 mm;休闲期耕作较对照显著提高小麦籽粒产量,枯水年提高981-1 330 kg•hm-2,平水年提高883-1 089 kg•hm-2,丰水年提高1 256-1 457 kg•hm-2。且枯水年、平水年深翻效果较好,而丰水年深松效果较好。休闲期耕作较对照显著提高平水年、丰水年小麦花后旗叶谷氨酰合成酶(GS)活性、花后5-15 d旗叶谷氨酸合成酶(GOGAT)活性,显著提高不同降水年型籽粒GS、GOGAT活性。休闲期耕作较对照提高平水年、丰水年籽粒清蛋白、醇溶蛋白、谷蛋白含量、蛋白质含量,提高枯水年、丰水年谷醇比,提高不同降水年型籽粒蛋白质产量。休闲期深翻处理枯水年籽粒蛋白质产量,平水年籽粒清蛋白、醇溶蛋白、蛋白质含量及蛋白质产量显著高于深松处理;休闲期深松处理丰水年籽粒蛋白质及其组分含量、蛋白质产量、谷醇比显著高于深翻处理。不同降水年型休闲期耕作条件下,开花期土壤水分影响了旗叶GS、GOGAT活性,尤其是旗叶GS活性,旗叶GS活性与籽粒蛋白质及其组分含量、谷醇比、蛋白质产量关系密切,开花期土壤水分与籽粒球蛋白、醇溶蛋白、蛋白质含量、籽粒蛋白质产量关系密切,尤其是谷醇比与开花期深层土壤水分的关系较密切。【结论】旱地小麦休闲期耕作有利于蓄积休闲期降水,提升旱地小麦土壤水分贮备水平,如播种前土壤蓄水量和开花期土壤蓄水量,从而提高产量、优化品质,其中枯水年、平水年以休闲期深翻效果较好,丰水年以休闲期深松效果较好。  相似文献   

6.
不同降水年型旱地小麦覆盖对产量及水分利用效率的影响   总被引:15,自引:2,他引:13  
【目的】明确旱地麦田休闲期覆盖的蓄水增产效果和生育期覆盖播种的节水增产效果,探索旱地小麦不同降水年型休闲期覆盖和生育期覆盖的保水技术新途径。【方法】于2011-2014年在山西闻喜县开展大田试验,以休闲期覆盖渗水地膜与不覆盖为主区,以生育期膜际条播、条播为副区,研究覆盖对旱地麦田3 m内土壤水分、小麦产量构成、水分利用效率和节水增产效率的影响。【结果】休闲期覆盖较不覆盖处理提高了播种期0-300 cm土层土壤蓄水量,丰水年达40-41 mm,平水年达55-58 mm,欠水年达70 mm,且欠水年更有利于蓄积土壤水分于深层,显著提高了不同降水年型休闲期土壤蓄水效率,达到20%以上,其覆盖的蓄水效果可延续至孕穗期,且生育期配套膜际条播效果更佳。休闲期覆盖较不覆盖处理显著提高小麦穗数、产量和水分利用效率,产量提高20%以上,水分利用效率提高15%以上,且生育期配套膜际条播小麦穗粒数、千粒重也显著提高。结果还表明,休闲期覆盖处理小麦播种期土壤水分每多蓄1 mm,丰水年小麦可增产21-27 kg·hm-2,平水年可增产16-18 kg·hm-2,欠水年可增产13-24 kg·hm-2,且休闲期覆盖条件下,生育期膜际条播播种对产量的提升有较大的调控作用。生育期地膜覆盖保水后,旱地麦田节水、增产效果提高,单位粮食生产节水量提高10%以上,消耗1 mm土壤水分产量提高11%以上。【结论】旱地小麦休闲期覆盖有利于蓄积休闲期降雨,改善底墒,尤其欠水年蓄水效果更佳,有利于提高小麦花前土壤水分,促进有效穗数的形成,提高产量,且生育期膜际条播播种效果更佳。底墒充足时,生育期膜际条播播种有利于提高旱地麦田的节水增产效果,而欠水年底墒不足时,会导致水分浪费和减产。  相似文献   

7.
节水高效小麦品种筛选与应用研究   总被引:1,自引:0,他引:1  
为筛选抗旱小麦品种,于2011―2013年设置全生育期不灌水(W0)、灌1水(拔节期灌水80mm,W1)、灌2水(拔节期灌水80mm+开花期灌水80mm,W2)共3种灌溉处理,比较16个冬小麦品种的生长发育特性、产量、农田耗水量(ET)和水分利用效率(WUE)差异。结果表明,不同小麦品种间生长发育特性、产量、ET和WUE均存在显著差异。以2a平均小麦籽粒产量、ET和WUE为指标进行聚类分析,将16个小麦品种分为4类,分别为以‘周麦24’为代表的节水超高产类,以‘矮抗58’为代表的高产类,以‘新麦26’为代表的节水稳产类,以‘周麦22’为代表的中低产类。W1处理不仅能获得较高产量且WUE最高,‘周麦23’和‘周麦24’因产量和WUE表现优异,推荐其作为豫北地区抗旱节水高效示范推广品种,2013-2014年大田示范节水增产显著。  相似文献   

8.
 【目的】研究不同土壤质地下灌水处理对小麦耗水特性和籽粒淀粉组分积累及粒重与产量的影响,为小麦节水高产栽培提供理论依据。【方法】在2004-2005年和2006-2007年小麦生长季,以强筋小麦济麦20为材料进行田间试验,采用水分平衡法计算小麦生育期间耗水量,双波长法测定籽粒淀粉含量,以淀粉含量乘以粒重求得淀粉积累量。【结果】2004-2005生长季,在土壤质地为壤土的条件下,W1处理(底墒水、拔节水和开花水各灌60 mm,籽粒产量为8 701.23 kg•hm-2)的耗水量低于W2处理(底墒水、冬水、拔节水和开花水各灌60 mm,籽粒产量为9 159.30 kg•hm-2),土壤水利用效率与W2处理无显著差异,降水占耗水量的百分率、灌水利用效率和水分利用效率高于W2处理;成熟期各处理粒重无显著差异。2006-2007生长季,在土壤质地为砂质壤土的条件下,W3’处理(底墒水、冬水、拔节水和开花水各灌60 mm)获得最高籽粒产量,耗水量和降水占耗水量的百分率与其他灌水处理无显著差异;土壤水和降水利用效率、水分利用效率均显著高于其它处理,灌水利用效率显著低于其他处理;成熟期粒重与W2’处理(底墒水、拔节水和开花水各灌60 mm)无显著差异,均高于其它处理。在W1处理冬前期和开花期0~140 cm土层和拔节期0~80 cm土层土壤相对含水量高于W0处理(生育期不浇水)的基础上,拔节期和开花期各灌水60 mm,增加了灌浆后期支链淀粉积累量,减少了直链淀粉积累量,提高了支链淀粉含量/直链淀粉含量比值(支/直比);在W2处理拔节期和开花期80~140 cm土层土壤相对含水量高于W1处理的基础上,拔节期和开花期各灌水60 mm,对灌浆末期支链淀粉和直链淀粉积累量无显著调节效应。【结论】在保水能力较强的壤土上,W1处理灌浆末期籽粒直链淀粉积累量低于W0处理,支链淀粉积累量和支链淀粉含量/直链淀粉含量比值高于W0处理,并获得了较高的籽粒产量和水分利用效率,进一步增加灌水量对淀粉组分积累量无显著调节效应,水分利用效率降低。在保水能力较差的砂质壤土上,W3’处理获得最高籽粒产量和水分利用效率。可供壤土和砂质壤土条件下小麦生产中确定灌水方案参考。  相似文献   

9.
徐学欣  王东 《中国农业科学》2016,49(14):2675-2686
【目的】探明微喷补灌对冬小麦开花后旗叶衰老和光合特性、籽粒灌浆速率、产量和水分利用效率的影响,为小麦节水高产提供重要技术支持。【方法】于2011-2013年冬小麦生长季,选用高产冬小麦品种济麦22,设置全生育期不灌水(W0)、微喷补灌(W1)和传统畦灌(W2)处理,研究小麦开花后旗叶水势、超氧化物歧化酶(superoxide dismutase,SOD)和过氧化氢酶(catalase,CAT)活性、叶绿素荧光参数、群体光合速率和籽粒灌浆速率等的差异。W1与W2处理的灌水时期一致,均于小麦拔节期和开花期各灌水1次。W1处理采用小麦专用微喷带(ZL201220356553.7)补充灌溉,灌水前测定土壤含水量。两年度小麦拔节期均设定0-140 cm土层土壤目标相对含水量为70%,第一年和第二年小麦开花期设定0-140 cm土层土壤目标相对含水量分别为70%和65%,根据灌水定额公式计算所需补灌水量。W2处理采用传统畦灌方式灌溉,改口成数为90%,即当水流前锋到达畦长长度的90%位置时停止灌水,用水表计量实际灌水量。W1与W2处理试验小区的规格一致,畦宽(左侧畦梗中心线至右侧畦梗中心线的垂直距离)2 m,畦梗宽0.4 m,畦长60 m,面积120 m2。小区间设1.0 m保护行。每小区等行距种植8行小麦,实际行距22.9 cm。W1处理的每个试验小区在自边行向内数第4行与第5行小麦之间沿小麦种植行向(畦长方向)铺设一条专用微喷带。微喷带进水端装有压力表、水表和闸阀,进水端水压设为0.02 MPa。灌溉水水源为井水,从水源至微喷带和畦田进水端采用PVC水龙带输水。畦灌的单宽流量为4.6-5.2 L·m-1·s-1。【结果】两年度微喷补灌处理在小麦拔节期和开花期的补灌水量分别为21.3-96.0 mm和29.0-38.5 mm,灌水分布均匀系数达87.9%-97.0%,不低于传统畦灌处理,而全生育期总灌水量比传统畦灌处理减少33.2-70.8 mm,节水21.0%-54.2%。微喷补灌处理开花后旗叶水势、SOD和CAT活性、丙二醛含量、旗叶最大光化学效率、实际光化学效率,及群体光合速率和籽粒灌浆速率、籽粒产量均与全生育期灌2水的传统畦灌处理无显著差异,但水分利用效率提高2.1-2.9 kg·hm-2·mm-1,达21.6-23.2 kg·hm-2·mm-1。【结论】小麦拔节期和开花期微喷补灌可以根据灌水前的降水量和土壤含水量状况及时调节补灌水量,并实施精确、均匀灌溉,适量供给小麦高产生理需水,挖掘出小麦节水的更大潜力。  相似文献   

10.
 【目的】研究高产条件下灌水时期和灌水量对小麦的耗水特性和籽粒蛋白质组分含量的影响,为小麦节水高产优质栽培提供理论依据。【方法】设置不同灌水时期和灌水量的处理,采用反相高效液相色谱(RP-HPLC)分析方法对籽粒蛋白质进行分离量化,研究不同水分处理对小麦耗水量、水分利用率、籽粒产量、籽粒品质和籽粒蛋白质组分含量的影响。【结果】随着灌水量的增加,灌水量占农田耗水量的百分率提高,降水量和土壤贮水消耗量占农田耗水量的百分率降低。减少灌水量,促进小麦对土壤贮水的利用,提高小麦在0~100 cm各土层的土壤耗水量。降低农田耗水量、提高水分利用率是实现节水高产栽培的有效途径。拔节期和开花期分别灌水60 mm的处理在两年度生长季均获得了最高的水分利用率;在2004-2005年生长季W1处理的籽粒产量与W2无显著差异,但显著高于W0处理;在2005-2006年生长季W'2处理的籽粒产量与W'3无显著差异,但显著高于W'0、W'1处理。水分对小麦籽粒蛋白质组分含量具有重要的调控作用。在2004-2005年生长季,与W2处理相比,W1处理的籽粒醇溶蛋白含量降低,HMW-GS含量和谷蛋白含量升高,籽粒蛋白质含量和湿面筋含量升高,面团形成时间和面团稳定时间延长,有利于强筋小麦济麦20籽粒品质的改善。在2005-2006年生长季,随灌水量增加,籽粒HMW-GS含量、谷蛋白含量有先升高后降低的趋势,以W'2处理最高,与籽粒蛋白质含量、面团形成时间和面团稳定时间的变化趋势一致。【结论】本试验条件下,拔节期和开花期分别灌水60 mm是兼顾节水、高产、优质的最优处理。  相似文献   

11.
【目的】通过黄土塬区播前底墒变化和生育期差别供水(降水+补充灌溉)对冬小麦产量、耗水量以及水分利用效率影响的田间试验,揭示该区域农田有限水资源高效利用的调控机制,明确现有措施下冬小麦旱作生产潜力可实现水平。【方法】划设田间试验小区,在夏闲期通过覆盖保水与生物耗水措施形成底墒差异的基础上,设计如下试验:(1)由不同底墒+生育期降水形成4个冬小麦全生育期无补灌处理,以分析冬小麦产量及水分利用效率对播前底墒变化的响应。其2 m土层底墒变化范围为350—550 mm。(2)相同底墒下不同生育期灌一水处理:在平均底墒约为500 mm下分别在拔节期、孕穗期和灌浆期补充灌溉40 mm,探讨冬小麦不同生育期对等量灌溉的响应差别。(3)高底墒542.3 mm与571.6 mm下分别进行灌2水与4水处理,形成冬小麦全生育期比较充分的供水条件,研究冬小麦在低水分胁迫下产量提升的可能程度及其水分利用效率特征。【结果】(1)在黄土塬区降水季节分布特征下,播前底墒对冬小麦产量具有决定性作用,产量随底墒线性增加。在做好夏闲期蓄水保墒的基础上,旱作冬小麦产量可达到充分供水情况下能够取得产量的88%—90%水平。(2)与2 m土层底墒为500 mm且生育期无补充灌溉的处理比较,供水增加同为40 mm时,表现为底墒增加处理的产量提高了11.8%,次之是在拔节期与孕穗期分别补灌的处理,但三者间产量无显著差异;播前底墒较高并在拔节期及孕穗期补充灌溉的处理冬小麦产量达到试验年份较高水平,且作物水分利用效率(WUE)也得到提高。(3)冬小麦产量与耗水量表现为Logistic曲线关系,随着耗水量的增大,产量提升速率表现为先快后慢,边际水分利用效率(MWUE)则持续降低,而WUE表现为上升、达到峰值和下降三个阶段,且WUE到达其最高值的耗水量小于产量到达其最高值的耗水量。【结论】黄土塬区气候条件下,播前底墒差别与生育期差别供水对冬小麦产量均有影响,由底墒或不同生育时期分别增加等量供水在总供水水平相同时其增产效应基本一致;采用Logistic曲线模型可以较好地模拟冬小麦产量与耗水量之间的关系,揭示产量、耗水量及WUE间的内在联系。  相似文献   

12.
滴灌施肥对免耕冬小麦水分利用及产量的影响   总被引:11,自引:0,他引:11  
【目的】为解决黄淮海平原麦区冬小麦滴灌用水量和合理的水肥配合等问题,以山东省桓台县免耕农田为试验点,系统研究了滴灌施肥对土壤水分垂直运移、冬小麦产量及其构成因素、水分利用效率等的影响。【方法】采用测墒补灌和生育期滴灌施肥相结合的方法,以常规漫灌施肥处理为对照。设置65 mm(W1)、98 mm(W2)、130 mm(W3)、195 mm(W4)和260 mm(W5)5个滴灌梯度水平处理。在130 mm滴灌水平下,分别于冬小麦的分蘖期、拔节期、孕穗期、扬花期和灌浆期5个生育时期设置相应的氮磷钾肥料配比,采用氮磷钾3个因素,每个因素4个水平的二次饱和D-最优设计方法进行田间试验。氮、磷、钾4个水平分别为:0水平(0、0、0),1水平(94.5、42.4、59.2 kg•hm-2),2水平(189、84.7、118.3 kg•hm-2)和3水平(270、121、169 kg•hm-2)。【结果】测墒补灌试验结果表明,W1、W3和W5处理滴灌后土壤水分主要向下运移至60、80和100 cm以下土层。滴灌量越大,土壤水分垂直运移深度越大。滴灌量260 mm时存在灌溉水深层渗漏的风险;W1处理在整个生育期土壤含水量明显低于其他滴灌处理,滴灌量130 mm以上的处理,整个生育期0-80 cm土层的含水量为田间持水量的75%-80%;滴灌施肥处理与常规漫灌施肥处理相比显著增加了冬小麦的有效穗数,不同滴灌处理中灌溉量与穗粒数呈正相关关系,与千粒重呈负相关关系;滴灌量130 mm时,小麦籽粒产量最高;滴灌显著提高了冬小麦的水分利用效率,并以W3处理最高,达2.28 kg•m-3;对滴灌施肥试验的拟合结果表明,试验区冬小麦最佳N、P2O5和K2O施用量分别为206.63、86.72和88.07 kg•hm-2。【结论】在黄淮海平原地区免耕冬小麦采用测墒补灌和滴灌施肥相结合的方法可以显著提高水分利用效率和小麦籽粒产量,较常规对照分别提高了57.46%和21.13%。主要原因是滴灌后水分向下运移至作物根区内,减少了灌溉水深层渗漏的风险,促进了作物对随水施入肥料的吸收。合理的滴灌施肥配比下总体可节水51.85%,节约氮肥23.47%、磷肥28.33%和钾肥47.89%。  相似文献   

13.
【目的】中麦175是中国北部冬麦区水浇地和黄淮旱肥地大面积种植的水旱兼用型小麦品种。研究旨在明确其干物质积累和水分利用特征,揭示节水高产机理为培育水旱兼用的广适型小麦新品种提供理论支撑和评价指标。【方法】在河北吴桥和北京顺义两个试验点,以中麦175和京冬17为试验材料,在3种限水灌溉(W0,全生育期不灌溉;W1,灌拔节水75 mm;W2,灌拔节水和开花水共150 mm)水平下,比较两个品种群体性能、干物质积累与分配、产量及水分利用效率(water use efficiency,WUE)等性状及其对供水的响应特征。【结果】两个品种的产量均在W2水平最高,随着灌水量减少产量降低;W0主要降低单位面积粒数(每平米穗数减少47-67穗,穗粒数减少1.6-5.1粒),W1主要降低千粒重(降低0.6-1.5 g)。水分亏缺显著降低蒸散量(ET)和群体生物量,但显著促进了花前积累的干物质向籽粒的转运,适度水分亏缺(W1)提高WUE。在3种灌溉水平下,中麦175的产量及其稳定性均优于京冬17,表现为穗数、花前干物质积累量及其向籽粒的转运量和转运率、收获指数(HI)均较高,灌浆期反映群体性能的归一化植被指数(NDVI)和气冠温差(CTD)指标值及反映品种抗旱性能的茎秆可溶性糖含量(WSC)含量均较高,全生育期ET和WUE较高,大部分产量性状的水分敏感性较弱。穗粒数和生物量对水分的敏感系数(WS)与产量对水分的WS呈密切相关性,而灌浆前期群体NDVI和CTD对水分的WS也与产量对水分的WS高度相关。【结论】前期干物质积累快、群体库容量大及花后群体性能稳定性强可能是中麦175节水高产的主要原因。不同供水条件下灌浆期群体NDVI和CTD的差异性可作为小麦品种对水分敏感性的快速综合评价指标。  相似文献   

14.
基于AquaCrop模型的北京地区冬小麦水分利用效率   总被引:3,自引:0,他引:3  
【目的】作物水分利用效率(water use efficiency,WUE)是农业水分管理与决策的重要指标。北京是严重缺水的城市,其主要种植作物冬小麦灌溉用水占比高,开展冬小麦产量水分利用效率的分析研究,可为北京地区的冬小麦节水灌溉与增产平衡提供决策信息支持。【方法】利用2011—2012、2012—2013和2013—2014年国家精准农业示范研究基地冬小麦不同生育期不同灌溉处理下的田间实测数据,对AquaCrop作物模型进行参数本地化。统计北京地区2004—2014年冬小麦生育期的日降雨量数据,利用Pearson-Ⅲ型分布划分了3种降雨年型:湿润年(2012—2013年生育期)、平水年(2009—2010年生育期)和干旱年(2005—2006年生育期)。应用AquaCrop研究分析了3种不同降雨年型、14种灌溉情景下冬小麦籽粒产量水平和产量水分利用效率特征变化。【结果】基于AquaCrop模型的产量模拟值和实测值的R 2、RMSE和d分别为0.99、0.3 t·hm~(-2)、0.99。模型模拟的冬小麦产量水分利用效率:2011—2012年正常灌溉条件下为1.72 kg·m~(-3),2012—2013年正常灌溉条件下为1.67 kg·m~(-3),2013—2014年雨养、正常灌溉和过量灌溉条件下分别为1.27、1.74和1.64 kg·m~(-3),正常灌溉条件下产量水分利用效率最高,其次是过量灌溉,雨养条件下产量水分利用效率最低。在此基础上应用AquaCrop模型模拟分析了3种不同降雨年型冬小麦籽粒产量和产量水分利用效率随灌溉量变化的响应特征,其中,湿润年产量水分利用效率和籽粒产量达到最大值时所需的灌溉量分别为35和50 mm;平水年达到最大值所需的灌溉量分别为35和40 mm;干旱年达到最大值所需的灌溉量均为65 mm。【结论】AquaCrop模型可以很好预测北京地区不同年份不同灌溉条件下冬小麦的籽粒产量和产量水分利用效率。冬小麦产量与产量水分利用效率均随着灌溉量的增加逐渐增大,至最大值后开始减小,在干旱的情况下,植物通过自身适应策略会提高水分利用效率,随着水分的增加,水分利用率将降低,因此3种不同年型的产量水分利用效率的大小顺序依次为干旱年、平水年和湿润年。因此,在制定冬小麦灌溉策略时,要做到产量和产量水分利用效率兼顾。以上研究结果表明,利用Aqua Crop模型可以为北京地区冬小麦田间灌溉和决策提供指导。关于降雨年型本研究仅对湿润年、平水年和干旱年3种年型在越冬期、返青期、拔节期、开花期和灌浆期不同灌溉量和籽粒产量和产量水分利用效率之间的关系进行模拟,对于不同时期不同灌溉量对籽粒产量和产量水分利用效率的影响没有考虑,需要进一步研究验证。  相似文献   

15.
【目的】 探讨耕作方式与灌水次数对砂姜黑土冬小麦水分利用和籽粒产量的影响,明确适宜砂姜黑土区冬小麦产量和水分利用效率同步提高的耕作与灌水处理组合模式。【方法】 于2015—2017年连续2个冬小麦生长季,在豫东南砂姜土区设置旋耕(RT)、深松(SS)2种耕作方式为主处理和拔节期+开花期灌2次水(W2)、拔节期灌1次水(W1)、全生育期不灌水(W0)3种灌水为副处理的二因素裂区试验,深入研究耕作方式与灌水次数的主效应及其互作效应对砂姜黑土冬小麦水分利用和籽粒产量的影响。【结果】 耕作与灌水对砂姜黑土麦田耗水特性、水分利用效率及籽粒产量均具有明显的调控效应。SS较RT处理可显著增加土壤贮水消耗,有利于提高自然降水和灌溉水的利用效率,与RT相比,两年度SS处理的土壤平均贮水消耗量、降水、灌水利用效率分别提高13.69%、7.03%、6.51%;增加灌溉虽可明显增加冬小麦田间耗水量,但过多灌溉致使水分利用效率降低,两年度W2较W1、W0的水分利用效率平均值分别下降18.85%、16.69%。SS处理的籽粒产量显著高于RT处理,且以深松+拔节期灌1水处理组合SSW1的产量最高。相同耕作方式下,随灌水次数的增加,千粒重呈降低趋势,成穗数呈增加趋势;两年度穗粒数变化总体随灌水次数的增加呈先升后降的变化规律。耕作方式主要通过调控千粒重影响产量,灌水次数则主要通过调控穗粒数和千粒重而影响产量,但灌水过多会抑制穗粒数和千粒重的提高。【结论】 综合考虑耕作方式与灌水次数对冬小麦水分利用和籽粒产量的调控效应,深松+拔节期灌1水处理组合SSW1可作为适宜豫东南砂姜黑土区冬小麦产量和水分利用效率同步提高的耕作与灌水处理组合模式。  相似文献   

16.
【目的】探讨测墒补灌和定量灌溉对2个小麦品种旗叶叶绿素荧光、衰老特性及籽粒产量的影响,为小麦节水高产提供理论依据。【方法】于2013—2015两年度,在大田条件下,选用泰农18(T18)和济麦22(J22)2个小麦品种,设置3个水分处理:W0(全生育期不灌水)、W1(依据0—40 cm土层土壤相对含水量进行测墒补灌,拔节期和开花期目标土壤相对含水量均为65%)、W2(定量灌溉,拔节期和开花期分别灌溉60 mm),研究测墒补灌和定量灌溉对2个小麦品种旗叶叶绿素荧光特性及衰老特性的影响。【结果】W1处理通过调节拔节期和开花期灌水量,保持灌水后0—40 cm土层土壤相对含水量在65%,可防止灌水过多或过少,为小麦生长发育创造适宜的土壤水分环境。W1处理条件下,两小麦品种开花后14、21和28 d的旗叶电子传递速率、光化学猝灭系数、PSⅡ实际光化学效率及旗叶蔗糖含量均显著高于W2处理,磷酸蔗糖合成酶活性在花后14和21 d显著高于W2处理;两小麦品种开花后14、21和28 d的超氧化物歧化酶、过氧化氢酶活性均显著高于W2,但同期旗叶丙二醛含量显著低于W2并保持较高的旗叶可溶性蛋白含量。两年度T18和J22两品种W1处理的籽粒产量、水分利用效率和灌溉效益均显著高于W2。品种间比较可知,T18两灌水处理的旗叶电子传递速率、光化学猝灭系数、PSⅡ实际光化学效率及旗叶蔗糖含量在花后21和28 d均显著高于J22,磷酸蔗糖合成酶活性在花后7、14和21 d亦显著高于J22;T18开花后21和28 d的超氧化物歧化酶、过氧化氢酶活性、可溶性蛋白含量均显著高于J22,但同期旗叶丙二醛含量显著低于J22。同一年度同一处理条件下,T18和J20总耗水量和水分利用效率均无显著差异;在W0处理条件下,J22的籽粒产量显著高于T18;但在W1和W2处理条件下,T18的籽粒产量、灌溉效益均显著高于J22。【结论】在小麦拔节期和开花期依据0—40 cm土层土壤相对含水量进行测墒补灌至65%土壤相对含水量,是两小麦品种同步实现高产与节水的有效措施。在灌溉条件下T18的产量潜力高于J22,但在干旱条件下,其对水分敏感,致使产量低于J22。  相似文献   

17.
彭霄  蒲甜  杨峰  杨文钰  王小春 《中国农业科学》2019,52(21):3763-3772
目的 探究不同灌水比例和灌水时间对单套作玉米产量及其水分利用效率的影响,为构建套作复合群体水分高效管理技术提供依据。方法 采用自动式遮雨棚水分精量控制,2016—2017年连续2年在灌溉定额4 050 m 3·hm -2条件下,设置2种种植模式(单作A1、套作A2)、3种灌水比例(播种水25%+拔节水25%+抽雄水25%+灌浆水25%,B1;播种水25%+拔节水25%+抽雄水15%+灌浆水35%,B2;播种水25%+拔节水35%+灌浆水40%,B3)两因素随机区组试验。研究不同种植模式下灌水时间和灌水比例对玉米生育期内土壤含水量、棵间蒸发量、耗水特征、产量及水分利用效率的影响。 结果 相同的灌溉定额下,玉米拔节后单作土壤含水量比套作平均高出16.60%,拔节期—成熟期套作棵间蒸发量平均较单作高出23.60%;单套作耗水强度高峰期均为拔节—抽雄期,日耗水强度最高达到7.21 mm·d -1,耗水量占全生育期21.62%—31.67%,拔节期后套作阶段耗水强度均显著高于单作,平均高出3.68%;单作玉米产量在播种水25%+拔节水35%+灌浆水40%时达最高,平均较单作其他处理提高16.49%,水分利用效率平均提高11.71%,而套作则在灌水处理为播种水25%+拔节水25%+抽雄水15%+灌浆水35%时,穗粒数、有效穗数平均较其他灌水处理增加4.47%、6.97%,从而使产量平均增加22.07%,水分利用效率平均提高19.11%。 结论 本试验灌溉定额为4 050 m 3·hm -2下,播种、拔节期、灌浆期分别灌水25%、35%、40%有利于提高单作玉米产量,而套作玉米采用宽窄行带状栽培则需要增加一次灌水时间,在播种、拔节期、抽雄期、灌浆期分别灌水25%、25%、15%、35%有利于提高其产量及水分利用效率。  相似文献   

18.
水氮对冬小麦-夏玉米产量及氮利用效应研究   总被引:17,自引:3,他引:14  
【目的】水肥是作物产量的两大限制因子。当前在作物生产中对水氮资源利用不够合理,不仅浪费水资源,而且严重威胁环境。为了探讨华北山前平原冬小麦-夏玉米轮作体系合理的水氮配合措施,在5年水氮定位试验基础上对周年轮作体系产量、氮吸收与利用状况进行了分析。【方法】试验为冬小麦夏玉米周年轮作种植,设置水、氮两因子,裂区试验设计,水分为主区,施氮量为副区。水分设置限水和适水两个处理,根据华北山前平原冬小麦夏玉米灌溉制度,冬小麦限水和适水下灌水次数分别为1水(拔节期)和2水(拔节+开花水),夏玉米限水和适水下灌水次数根据不同年型降水量而定(1水为播前水,2水为播前水+12展叶水,3水为播前水+12展叶水+开花水)。周年设置6个施氮水平,小麦+玉米氮肥用量分别为(0+0)、(60+60)、(120+120)、(180+180)、(240+240)、(300+300)kg·hm-2。【结果】在供水量较高和较适宜的条件下(年供水量大于609.5 mm),水分不是氮肥肥效发挥的限制因素,氮肥对产量的贡献较大;而供水量较低的条件下,肥效受较大抑制,供水对产量贡献较大。供水量和施氮量有明显的耦合效应,限水和适水下得到最高产量的施氮量冬小麦分别为134.8和126.4 kg·hm-2、夏玉米分别为176.8和127.2 kg·hm-2。限水和适水下单季施氮量分别为300和240 kg·hm-2时,地上部总氮量达较高值,但限水和适水下夏玉米和限水下冬小麦氮量超过60 kg·hm-2、适水下冬小麦施氮量超过120 kg·hm-2时,秸秆残留氮素明显增加,对籽粒氮的贡献变小。氮肥偏生产力随施氮量增加而降低,且随年度推移氮肥偏生产力明显降低,尤其是小麦季施氮量60 kg·hm-2处理随年份增加降低尤为迅速。在本试验条件下周年施氮量限水240 kg·hm-2、适水120 kg·hm-2就能保持土壤有机质和全氮含量不降低。【结论】限水条件下水是限制氮肥肥效发挥的主要因素,通过改善水分条件可更有效的提高氮肥肥效,因此在干旱年型应降低施氮量。中高产田冬小麦-夏玉米轮作体系限水和适水下得到最高产量的施氮量分别为311.6和253.6 kg·hm-2,此时最佳产量可分别达16 127.5和17 272.9 kg·hm-2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号