首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
玉米品种穗部性状差异及其对籽粒脱水的影响   总被引:6,自引:0,他引:6  
【目的】玉米籽粒脱水速率快、收获期含水率低是适宜机械粒收品种的基本要求。穗部性状是玉米遗传基础的直观表现,与籽粒脱水有较紧密的联系,探寻二者之间的关系、明确影响籽粒脱水速率的关键指标,对于适宜机械粒收品种的选育和筛选具有重要意义。【方法】本研究以黄淮海夏玉米区当前主推的22个品种为研究对象,按苞叶、籽粒、穗轴和穗柄等部位将穗部性状分为41个指标参数,于2015—2016年进行连续观测,并与衡量籽粒脱水快慢的5个参数(生理成熟前籽粒脱水速率、生理成熟后籽粒脱水速率、籽粒总脱水速率、生理成熟期籽粒含水率和收获期籽粒含水率)进行相关分析。【结果】41个穗部指标在品种间均存在极显著差异,其中部分指标与籽粒脱水特征密切相关。苞叶长度与生理成熟后籽粒脱水速率显著负相关,与收获期籽粒含水率显著正相关;"苞叶长度/果穗长度"与生理成熟后籽粒脱水速率显著负相关;果穗夹角与籽粒总脱水速率显著正相关;穗轴生理成熟期含水率与籽粒生理成熟期、收获期含水率均呈极显著正相关关系;穗粒数与生理成熟前籽粒脱水速率、总脱水速率分别达到极显著、显著水平的负相关关系;"果穗长度/行粒数"与籽粒生理成熟前、后和总脱水速率分别呈显著或极显著正相关关系,与收获期籽粒含水率呈显著负相关关系;生理成熟期百粒干重与籽粒含水率呈显著负相关关系;而穗部其他性状与籽粒脱水速率、生理成熟期和收获期籽粒含水率均无显著相关性。【结论】黄淮海区域现有玉米品种穗部性状差异较大,苞叶短、穗轴生理成熟期含水率低、果穗夹角大、穗粒数少、籽粒小等穗部特征有利于籽粒脱水,可为适宜机械粒收品种的筛选和选育提供参考。  相似文献   

2.
玉米籽粒机械收获破碎率研究进展   总被引:4,自引:1,他引:3  
王克如  李少昆 《中国农业科学》2017,50(11):2018-2026
机械粒收是玉米收获技术发展的方向,是玉米实现全程机械化、转变生产方式的关键。当前,籽粒收获过程中破碎率高的问题不仅降低玉米等级和销售价格,而且导致收获产量下降,并增大烘干成本、增加安全贮藏的难度,是推广机械粒收技术面临的重要问题。玉米不同基因型间籽粒破碎率存在显著差异,抗破碎特性是可遗传的性状,可通过育种培育抗破碎率的品种;不同收获机械和作业参数对籽粒破碎率有显著影响,选择轴流式收获机,并根据玉米生长、成熟和籽粒含水率状况及时检查与调试收获机参数是保证低破碎率的有效措施;生态环境因素对破碎率也有显著的影响,籽粒形成、自然干燥和收获期的光照、温度、湿度等因素均会影响到籽粒硬度、容重、含水率和质地等与籽粒破碎相关的特性;种植密度、水肥管理、收获时期等栽培管理措施对籽粒破碎率也会产生明显的影响。因此,针对不同区域生态环境条件,应选择适宜生育期内能与当地光温资源匹配的品种以及确定品种适宜的种植区域。合理种植密度、优化氮肥管理和适量灌溉有利于降低破碎率,而选择在最佳收获期收获是降低籽粒破碎率的最有效措施。  相似文献   

3.
玉米机械粒收是利用联合收获机摘穗、脱粒一次完成的收获方式,由于减少了果穗储运、晾晒、脱粒等作业环节,不仅大大降低劳动强度、节约人力成本,还可降低晾晒、脱粒过程中的籽粒霉烂与损失,是我国玉米机械收获的发展方向和今后玉米生产转方式的重点[1]。美、德等国20世纪50年代玉米收获作业也以机械穗收为主,70年代全面采用田间机械粒收[2-4]。目前我国玉米机械播种率已超过80%,但机械收获率仍较低,2015年统计为63%,且以穗收为主;粒收主要分布在新疆、黑龙江3—5积温带和内蒙古东北部等玉米产区[5],占比不足5%。玉米机械收获、特别是粒收水平低是制约我国玉米全程机械化发展的瓶颈。 国外有关玉米机械粒收技术、相关基础理论研究及适合粒收品种选育的转型主要集中于20世纪60—90年代,为机械粒收技术的全面普及提供了支撑。20世纪60年代,随着能够实现田间籽粒直接收获的玉米割台被广泛接受,粒收技术才迅速发展起来[6]。在美国玉米带的Iowa,Illinois,Indiana,Minnesota等州,玉米籽粒联合收获的面积从1964年的24%增加到1968年的48%[7-9] ,从此机械粒收技术在美国全面铺开。美国在刚推广机械粒收技术时,籽粒水分一般在20%以下,机械损伤问题并不突出。但烘干技术被广泛采用后,20%—35%之间水分的玉米都能收获,因水分高导致的籽粒机械损伤过大、烘干成本高等问题出现[2-3],使得农民遭受巨大损失[10],并严重威胁到了美国玉米在国际市场的地位[11]。为此,美国和一些玉米生产技术先进国家开展了大量相关研究,通过品种改良、提早成熟延长脱水时间、改进粒收机械等措施,逐步解决了籽粒含水率高、机械粒收质量不佳的问题。 推广机械粒收是玉米生产方式的一次重大变革,涉及农机、品种、栽培、收储、烘干、销售、加工等多个环节,是一项系统工程。以往我国玉米生产以人工收获和机械穗收为主,在玉米品种籽粒脱水特征和影响因素、生理成熟后田间站秆晾晒、收获机械及其作业质量、籽粒烘干收储等与机械粒收相关领域的研究较为薄弱,制约了粒收技术的应用推广。其中,品种是当前影响我国该技术推广的主要制约因素。20世纪80年代以来,我国玉米育种以高产为目标,在传统人工收获条件下,采取了高秆稀植大穗、延长生育期获取高产的育种路线,加之脱水性状的复杂性,相关籽粒脱水研究进展较慢,后期脱水快的种质资源严重不足。目前,我国许多玉米产区种植的品种生育期偏长,收获时籽粒含水量通常在30%—40%,活秆成熟现象还较为普遍,不仅难以实现机械粒收,而且堆积晾晒过程中霉变严重,影响玉米商用品质。培育早熟、籽粒脱水快、收获时含水量低的品种应成为各产区机械粒收技术推广的前提。此外,籽粒破碎率作为评价玉米机械粒收质量的主要指标,据本团队在全国16个省市区194个地块获得2 450组机械粒收田间测试样本[5,12-19]统计分析表明,当前玉米机械粒收破碎率均值为8.56%,高于≤5%的要求[5]。籽粒破碎不仅造成玉米收获损失、降低玉米等级和销售价格,而且增大烘干成本、增加安全贮藏的难度,成为我国玉米机械粒收技术推广的重要限制因素。鉴于破碎率受品种遗传因素、收获机械及其作业质量、天气因素、栽培措施等多因素综合影响[2,4-5,20-22],深入研究这些因素对破碎率影响的定量关系,才能为制定高质量的收获措施提供依据。为推动玉米机械粒收技术的应用,中国农业科学院作物栽培与生理创新团队自2010年起开展宜机收品种的筛选、影响收获质量关键因素的研究与技术集成示范,取得较大进展。《中国农业科学》50卷11期“玉米栽培研究”专刊中曾集中发表了6篇团队在玉米机械粒收方面的研究论文,本栏目又以“玉米机械粒收专题”形式发表5篇文章,其中,《玉米生长后期倒伏研究进展》针对倒伏这一制约玉米种植密度进一步提高和机械粒收技术发展的重要因素,从玉米生育后期植株的衰老生理及其影响因素角度进行综述分析,提出提高玉米后期抗倒伏能力的措施与建议。《玉米品种穗部性状差异及其对籽粒脱水的影响》测定了苞叶、籽粒、穗轴、穗柄等4个部位共计41项穗部性状指标,剖析了这些性状在品种间的差异及其对籽粒脱水的影响,发现苞叶短、穗轴生理成熟期含水率低、果穗夹角大、穗粒数少、籽粒小等穗部特征有利于籽粒脱水。《玉米穗轴机械强度及其对机械粒收籽粒破碎率的影响》一文研究了玉米生育后期穗轴机械强度的变化特征及其影响因素,提出玉米穗轴机械强度是影响机械粒收籽粒破碎的重要因素之一,生育后期穗轴干物质积累和含水率是影响穗轴机械强度的重要因素。《夏玉米籽粒脱水特征及与灌浆特性的关系研究》通过系统观测玉米籽粒灌浆和脱水动态,建立了玉米籽粒含水率与授粉后积温(>0℃)的预测模型,分析了夏玉米籽粒脱水和灌浆特征及二者之间的关系,提出灌浆期积温和生理成熟期籽粒含水率两个参数作为粒收品种筛选指标的建议。《基于品种熟期和籽粒脱水特性的机收粒玉米适宜播期与收获期分析》利用籽粒含水率预测模型,分析了西北灌溉春玉米籽粒含水率变化动态及其适宜机械粒收收获期,以规模化生产的大农场为研究对象,提出了高产高效协同生产目标下的品种和播期的配置原则,为规模化生产条件下基于粒收品种的搭配提供了依据。希望这些论文的发表,能抛砖引玉,带动更多科技工作者开展玉米机械粒收相关理论与技术研究,促进以机械粒收为核心的现代玉米生产技术的推广应用。  相似文献   

4.
【目的】机械粒收背景下,明确不同种植区玉米生理成熟后田间站秆籽粒脱水至适宜收获期的积温需求,以期为各种植区选育适宜粒收品种,合理安排农事作业和提高机械利用效率提供理论指导。【方法】 2014—2018年,在西北灌溉春玉米、北方春玉米和黄淮海夏玉米产区的典型试验点,选用141个不同熟期的主栽玉米品种,系统观测了籽粒含水率的动态变化,结合气象数据,分析不同产区玉米生理成熟后田间站秆籽粒脱水至含水率25%、20%的积温需求。【结果】不同产区玉米生理成熟期籽含水率不同,黄淮海夏玉米区参试品种的生理成熟期含水率均值为28.5%,西北灌溉春玉米区和北方春玉米区分别为29.9%、29.6%。相关分析表明,不同品种的生育期与生理成熟期籽粒含水率之间无显著相关性。以生理成熟至25%、20%含水率积温和生理成熟期含水率为指标,运用双向平均法将参试品种划分为积温需求少含水率高(I)、积温需求多含水率高(II)、积温需求少含水率低(III)、积温需求多含水率低(IV)4种类型。对于西北地区、华北地区和东北地区一年一熟的春播来说,可以选择III、IV类型品种,但是IV类型品种需要预留足够的积温来进行田间站秆脱水。对于黄淮海地区一年两熟的夏玉米,III类型品种能够较好协调小麦和玉米的生产调配,充分利用可供籽粒脱水的积温的余量。【结论】由于区域间玉米脱水期间热量条件的不同,玉米籽粒生理成熟至25%、20%含水率的天数均表现为西北灌溉春玉米区长于北方春玉米区、黄淮海夏玉米区。通过选择适合不同区域的积温类型品种、科学制定收获时间,可以有效降低收获时籽粒含水率和提高收获质量。  相似文献   

5.
玉米生理成熟后田间脱水期间的籽粒重量与含水率变化   总被引:15,自引:2,他引:13  
【目的】黄淮海夏播玉米区收获期偏早、籽粒含水率普遍偏高,制约了机械粒收的收获质量,延期收获能够降低收获期籽粒含水率,但是该过程是否因籽粒重量下降造成产量损失尚不明确。本文开展玉米生理成熟后田间站秆脱水期间籽粒含水率与粒重变化情况研究,为机械粒收技术的推广应用提供依据。【方法】本研究于2015年和2016年在河南新乡中国农业科学院综合试验站进行,选择22个当前主要种植品种为供试材料,采取统一授粉,连续测定籽粒重量与籽粒含水率变化。其中,2015年授粉后26 d开始测定,生理成熟后26—52 d结束;2016年授粉后11 d开始测定,生理成熟后16—35 d结束。分析生理成熟后田间脱水期间籽粒含水率与粒重变化。【结果】22个参试品种生理成熟期百粒干重为23.3—37.4 g,平均为30.8 g;籽粒含水率为21.5%—33.1%,平均为27.5%。22个品种生理成熟后分别经过16—52 d田间站秆晾晒后,百粒干重为22.9—38.4 g,平均为32.0 g;籽粒含水率为12.9%—24.4%,平均为17.3%。生理成熟前籽粒重量随着授粉后天数增加而逐渐增加,不同测试时期之间存在显著差异;生理成熟后随着田间站秆时间延长,籽粒含水率变化呈极显著下降趋势,而籽粒重量未表现出显著变化,不同熟期品种和不同年份结果表现一致;生理成熟后籽粒重量与籽粒含水率之间不存在显著相关关系。【结论】黄淮海夏玉米生理成熟后田间站秆晾晒脱水期间,籽粒含水率显著下降,而籽粒重量并未发生显著变化,延期收获降低了籽粒含水率,并且不会因粒重下降造成产量损失。  相似文献   

6.
山西中晚熟区春玉米宜粒收品种筛选试验   总被引:5,自引:0,他引:5  
2016年在山西忻州开展适宜粒收春玉米品种筛选试验,以先玉335为对照,对12个品种的抗倒性、灌浆、脱水特性及收获期籽粒含水率、产量、机收质量进行分析评价,旨在筛选出山西中晚熟区种植的适宜粒收的春玉米品种。结果表明,和育301、先玉1622的倒伏倒折率分别为2.4%,2.5%,灌浆速率均高于对照;生理成熟期(授粉后65d),和育301籽粒含水率为19.3%,先玉1622籽粒含水率(28.5%)高于对照,但其生理成熟后籽粒脱水速率高,在生理成熟后10 d籽粒含水率为24.48%,二者均达到适宜籽粒机收的水平;和育301、先玉1622的产量较对照分别增加9.1%,6.2%,且在大田机收条件下,其籽粒破碎率分别为4.3%,4.9%,籽粒含杂率分别为1.0%,0.6%,总损失率分别为2.2%,1.9%,符合《玉米收获机械技术条件(GB/T 21961—2008)》中规定的要求。和育301、先玉1622这2个品种倒伏倒折率低、籽粒灌浆快、生理成熟后脱水快、破损率和杂质率低、产量高,为山西中晚熟玉米区适宜粒收的品种。  相似文献   

7.
玉米生理成熟后籽粒脱水特性   总被引:1,自引:0,他引:1  
明确玉米生理成熟后籽粒脱水特性及与各器官脱水的关系,对加快玉米生理成熟后籽粒脱水速率和选育籽粒脱水速率快的品种具有重要意义。试验选用4个品种,从生理成熟期开始至生理成熟后31 d止,连续测定籽粒、穗轴、苞叶+果柄、叶片和茎秆的含水率,并分析生理成熟后籽粒脱水特性及其与各器官含水率的关系。结果表明,参试品种籽粒含水率降至28%所需生理成熟后积温及天数分别为197.08~353.32℃·d和7.3~12.9 d。籽粒含水率与其他器官含水率均呈极显著线性关系,籽粒脱水速率与穗轴脱水速率呈极显著正相关,与其他器官脱水速率相关性不显著。说明,合理的品种选择和缩短玉米生理成熟后籽粒脱水前期的持续时间可有效加快生理成熟后籽粒脱水,降低玉米生理成熟期籽粒含水率降至28%或25%所需积温;评价适宜机械粒收品种时,在关注籽粒脱水特性的同时需关注穗轴的脱水特性。  相似文献   

8.
密度对玉米生理成熟后籽粒含水率及脱水速率的影响   总被引:2,自引:0,他引:2  
[目的]为研究种植密度对玉米生理成熟后籽粒含水率及脱水速率的影响,探寻适合玉米籽粒机收的合理密植栽培模式。[方法]以苏玉30、苏玉29、苏玉20和农大108为试验材料,采取裂区设计,分析密度对生理成熟后籽粒含水率与脱水速率的影响。[结果]随着密度的增加,玉米生理成熟期和收获期籽粒含水率增加,而脱水速率降低。与苏玉20和农大108相比,苏玉30和苏玉29生理成熟期的籽粒含水率相对较低,随密度的增加其脱水速率的下降幅度也较小。就脱水性状而言,苏玉30和苏玉20具有耐密植的特点。[结论]该研究为适合玉米籽粒机收条件下的密植栽培模式提供参考依据。  相似文献   

9.
根据田间玉米籽粒含水率来确定最佳机械粒收的时间,能为定边区域春玉米机械粒收技术的推广应用提供依据。通过不同时间收获取样,进行称重、脱粒和测定,了解当地主栽玉米品种的籽粒含水率变化。定边区域春玉米成熟后,经过田间站杆脱水时期,籽粒含水率可以控制在17%~22%之间。每年十月中下旬收获,可保证玉米机械粒收质量。  相似文献   

10.
玉米机械粒收质量现状及其与含水率的关系   总被引:60,自引:2,他引:58  
【目的】机械粒收技术是现代玉米生产的关键技术,是国内外玉米收获技术发展的方向和中国玉米生产转方式的关键。明确当前中国玉米机械粒收质量的现状,研究影响收获质量的主要因素,推动玉米机械粒收技术发展。【方法】利用2011—2015年在西北、黄淮海和东北和华北玉米产区15个省(市)168个地块获得的1 698组收获质量样本数据,分析当前中国玉米机械粒收质量的现状及其影响因素。【结果】结果表明,籽粒破碎率平均为8.63%,杂质率为1.27%,田间损失籽粒(落穗、落粒合计)为24.71 g·m~(-2),折合每亩损失16.5 kg,平均损失率为4.12%,破碎率高是当前中国玉米机械粒收存在的主要质量问题。收获玉米籽粒平均含水率为26.83%,含水率与破碎率、杂质率及机收损失率之间均呈极显著正相关。其中,破碎率(y)与籽粒含水率(x)符合二次多项式y=0.0372x~2-1.483x+20.422(R~2=0.452**,n=1 698),在一定含水率范围内(含水率大于19.9%),破碎率随籽粒含水率增大而增大。【结论】当前中国玉米机械粒收时破碎率偏高,而籽粒含水率高是导致破碎率高的主要原因。对此,建议选育适当早熟、成熟期籽粒含水率低、脱水速度快的品种,适时收获,配套烘干存贮设施等作为中国各玉米产区实现机械粒收的关键技术措施。  相似文献   

11.
玉米收获期籽粒含水量与主要农艺性状相关分析   总被引:14,自引:1,他引:13  
以黑龙江省第一积温带10份熟期相近而收获期含水量差异较大的优良自交系为试验材料,采用完全双列杂交设计配制杂交组合,对田间自然脱水速率、苞叶长等农艺性状与玉米收获期籽粒含水量进行遗传相关和通径分析。相关分析表明,田间自然脱水速率与收获期籽粒含水量表现为极显著负相关(R=-0.4508),苞叶长、粒宽等性状与收获期籽粒含水量表现为极显著正相关;通径分析表明,苞叶长、粒宽等性状对收获期含水量的直接通径系数均为正值,穗长、田间自然脱水速率对收获期含水量的直接通径系数为负值。为选育低收获期含水量的玉米品种,应着重选育田间自然脱水速率快、苞叶长较果穗长略短、穗位稍低、轴细、籽粒偏窄及百粒重稍低的基因型。  相似文献   

12.
玉米子粒自然脱水速率的分析   总被引:4,自引:1,他引:4  
对 2 3个不同熟期玉米杂交组合生理成熟后 10d内子粒自然脱水速率进行了分析。结果表明 ,生理成熟时子粒含水量在 31 96 %~ 4 3 6 0 % ,同一熟期的材料子粒脱水速率有显著差异 ,变幅在 0 18%~ 1 80 %。子粒脱水速率大小与生理成熟早晚无明显相关 ,受生理成熟时含水量影响较大  相似文献   

13.
夏玉米机械粒收质量影响因素分析   总被引:50,自引:0,他引:50  
【目的】机械粒收是玉米生产的发展方向,收获质量是影响其推广应用的主要因素。中国玉米机械粒收还处于起步阶段,目前在西北和东北等春播玉米区推广应用面积较大,黄淮海夏播玉米区正在积极开展试验示范。本研究通过分析黄淮海夏玉米机械粒收质量及其影响因素,为该技术的推广应用提供支持。【方法】2013—2015年累计选用了23个玉米品种,在黄淮海典型代表区河南新乡开展试验研究。2013年和2015年在收获期分别进行2次机械收获,2014年1次机械收获。收获当天测定各个品种的收获前籽粒含水率,并调查测产。机械收获后从机仓随机取一定量籽粒样品,立即测定收获后籽粒含水率,然后手工分拣样品,测定籽粒破碎率和杂质率;收获后,在田间选取3个代表性样区,调查落穗损失和落粒损失。【结果】2013—2015年,籽粒破碎率共调查131个样点,结果显示,收获时玉米籽粒含水率在20.80%—41.08%,籽粒破碎率变幅为4.98%—41.36%,籽粒破碎率随着籽粒含水率的提高明显升高;破碎率低于8%的有38个样点,占比29.01%,籽粒含水率低于26.92%时,收获的玉米籽粒能够满足破碎率8%以下的要求。机收杂质率共调查134个样点,杂质率0.37%—5.28%,杂质率低于3%的样点有107个,占比79.85%,杂质率也随着籽粒含水率的升高而增加;2013—2014年,籽粒含水率低于28.27%时,杂质率能够低于3%的国家标准;2015年收获时籽粒含水率虽然较高,但杂质率均在3%以下。田间损失率共调查108个样点,变幅为0.18%—2.85%(落穗率和落粒率),均能满足国家标准,损失率不是影响机械收获质量的限制因素。在本试验条件下,籽粒含水率低于26.92%时,破碎率和杂质率分别低于8%和3%,田间损失率也符合国家标准,能够满足机械粒收质量要求。研究还发现,籽粒含水率相近的不同品种之间,机械收获的破碎率和杂质率也存在显著差异,表明品种固有的理化特性对机械收获质量也有影响。【结论】收获时的籽粒含水率是影响机械粒收质量的关键因素,在相同籽粒含水率条件下,品种之间收获质量表现出显著差异。由于年际间热量等条件的不同,收获时的籽粒含水率存在一定幅度的变动,但通过选择适宜品种、科学安排播种和收获时间,以河南新乡为代表的黄淮海夏玉米区完全能够保证玉米机械粒收质量。  相似文献   

14.
Mechanized grain harvest of maize becomes increasingly important with growing land plot size in Northeast China. Grain moisture is an important factor affecting the performance of mechanized grain harvest. However, it remains unclear what influences grain dehydration rate. In this study, maize grain dehydrating process was investigated in a two-year field experiment with five hybrids under two planting densities in 2017 and 2018. It was found that damaged-grain ratio was the main factor affecting mechanized harvest quality, and this ratio was positively correlated with grain moisture content at harvest (R2=0.6372, P<0.01). To fulfill the national standard of <5% damaged-grain ratio for mechanized grain harvest, the optimal maize grain moisture content was 22.3%. From silking to physiological maturity, grain dehydrating process was mostly dependent on the thermal time (growing degree days, GDDs) (r=–0.9412, P<0.01). The average grain moisture content at physiological maturity was 29.4%. Thereafter, the linear relationship between GDDs and grain moisture still existed, but the correlation coefficient became smaller (r=–0.8267, P<0.01). At this stage, grain dehydrating process was greatly affected by genotypes. Grain dehydrated faster when a hybrid has a smaller husk area (r=0.6591, P<0.05), larger ear angle (r=–0.7582, P<0.05), longer ear peduncle (r=–0.9356, P<0.01) and finer ear (r=0.9369, P<0.01). These parameters can be used for breeders and farmers to select hybrids suitable for mechanized grain harvest.  相似文献   

15.
【目的】筛选适宜贵州机械粒收的春玉米品种,并明确玉米机械粒收现状及存在的主要问题,为贵州春玉米机械粒收技术的推广提供理论与技术支撑。【方法】以32个玉米品种为研究材料,采用随机区组设计,于2017—2019年在贵州遵义和安顺进行玉米适宜机械粒收的品种筛选试验,收获时测定籽粒含水率、破碎率、杂质率、损失率和产量等指标,利用相关分析和双向平均作图法进行宜机收玉米品种筛选。【结果】贵州春玉米机收时籽粒含水率、破碎率、杂质率和总损失率均值分别为30.45%、11.71%、1.79%和12.58%,产量均值为8251.49 kg/ha,且品种间差异明显。当前贵州春玉米机械粒收存在收获时籽粒含水率高、破碎率高、损失率大的问题。相关分析结果表明,籽粒含水率偏高是引起机械粒收破碎率偏高的主要原因,通过降低收获时籽粒含水率可降低破碎率、杂质率和损失率,提高机收质量。以籽粒含水率和产量为指标进行筛选,其中11个品种收获时籽粒含水率较低、产量高,比较适宜机械粒收;进一步以籽粒破碎率与总损失率进行筛选,结果表明先玉1171、新中玉801和兴玉3号具有收获时籽粒含水率低、破碎率低、产量高和总损失率低的特点,适宜机械粒收。选择生育期稍短的品种,同时适当推迟收获期,可有效降低收获时籽粒含水率,提高机收质量。【结论】籽粒破碎率高和总损失率大是贵州春玉米机械粒收存在的主要质量问题,籽粒含水率高是导致机收质量差的主要原因,适当延迟收获时间可降低收获时籽粒含水率,提高机收质量。筛选出先玉1171、新中玉801和兴玉3号可作为贵州春玉米适宜机械粒收品种。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号