首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 239 毫秒
1.
【目的】探究瓜叶菊(Pericallis hybrid)叶片对模拟粉尘覆盖的光合响应特征及瓜叶菊对粉尘的耐受机制。【方法】以观赏植物瓜叶菊为研究对象,以不同浓度可溶性淀粉溶液喷洒模拟粉尘沉降,测定瓜叶菊叶片光合生理参数及光合氮分配等指标。【结果】①随着模拟粉尘浓度的增加,瓜叶菊叶片最大净光合速率(P_(max))、光合色素含量、最大电子传递速率(J_(max))呈现下降趋势,但差异不显著(P0.05),表明瓜叶菊具有一定的抗粉尘覆盖能力;②粉尘覆盖使瓜叶菊叶片的比叶面积(SLA)升高,单位面积氮含量(N_A)显著降低(P0.05),单位质量氮含量(N_M)降低;③随着模拟粉尘浓度增加,瓜叶菊叶氮在光合机制的分配系数(P_T)、捕光成分中的分配系数(P_L)、生物力能学的分配系数(P_B)、羧化系统的分配系数(P_C)显著上升(P0.05)。【结论】瓜叶菊通过改变光合氮分配格局维持光合作用,是其适应粉尘覆盖的重要机制。  相似文献   

2.
【目的】研究减氮对辣椒光合效率和产量的影响,分析不同施氮水平下氮素的含量与光合效率和产量的关系。【方法】研究利用盆栽在2个时期设置4个施氮水平:苗期N1(47.52 Kg/hm2)、N0.8(38.03 Kg/hm2)、N0.6(28.50 Kg/hm2)、N0(0 Kg/hm2);坐果期N1(79.20 Kg/hm2)、N0.8(63.36 Kg/hm2)、N0.6(47.52 Kg/hm2)、N0(0 Kg/hm2),分析不同处理下辣椒的光合、氮和产量等相关指标。【结果】苗期N0.6处理下色素辣椒生长指标和光合参数均最大,净光合速率分别较N1、N0.8、N0处理增加了8.6%、9.8%、13.5%;最大羧化速率(Vcmax)增加了7.6%、8.3%、9.3%;最大电子传递速率(Jmax)增加了17.1%、18.4%、21.8%。坐果期N0.8处理下色素辣椒生长指标及光合参数最大,净光合速率分别较N1、N0.6、N0处理升高了10.0%、10.2%、15.4%;Vcmax升高了4.9%、6.3%、13.4%;Jmax分别增加了0.6%、15.8%、21.9%。苗期N0.8处理下色素辣椒产量较N1、N0.6、N0分别增加了1.8%、2.5%、2.8%。坐果期N0.8处理下色素辣椒产量较N1、N0.6、N0分别增加了6.3%、11.6%、17.6%。随着施氮量的减少,辣椒比叶重(LMA)和光合氮利用效率(PNUE)增加,比叶氮(Narea)则下降;施氮水平对氮素在光合器官中的分配也有影响,氮素在光合系统分配比例随着施氮量的减少逐渐增加,在非光合系统中的分配比例随施氮量的减少而减少。氮素在辣椒叶片光合组分的分配比例与PNUE显著正相关,在非光合组分的分配比例则与PNUE显著负相关。【结论】内色素辣椒苗期营养生长最适宜施氮量为N0.6处理,而生殖生长最适宜施氮量为N0.8处理,坐果期则皆为N0.8处理,即两个时期N0.8处理皆更利于色素辣椒产量形成。  相似文献   

3.
【目的】研究泾惠渠灌区不同水氮供应对冬小麦植株氮素吸收运转的影响,为泾惠渠灌区提供合理的灌水施肥运筹方式。【方法】在泾惠渠灌区,通过田间小区试验研究不同灌水(W_(90)和W_(120),即灌水定额为90和120mm)和施氮(底肥60和120kg/hm~2,追肥0,60和120kg/hm~2,即施氮的底追肥处理组合为N_(60/0),N_(60/60),N_(60/120);N_(120/0),N_(120/60),N_(120/120))对冬小麦籽粒产量、各部位氮素积累量、氮素利用效率等的影响。【结果】除净积累量对籽粒氮的贡献率及氮素收获指数外,灌水和施氮对冬小麦籽粒产量、各器官氮素积累量、氮素转移量、氮素利用效率、氮肥农学利用效率均有显著影响。低水处理(W_(90))的籽粒产量、氮素积累量、氮肥农学利用效率显著高于高水处理(W120),其中产量增幅为4.88%~7.44%,植株氮素积累量增幅为6.15%~18.66%,氮肥农学利用效率增幅为19.48%~35.94%。随施氮量的增加,冬小麦籽粒产量、氮素积累量均呈显著增长趋势,其中籽粒产量表现为N_(0/0)(5 653.68kg/hm~2)N_(60/0)(6 777.71kg/hm~2)N_(60/60),N_(120/0)(7 165.63kg/hm~2)N_(60/120),N_(120/60)(7 376.92kg/hm~2)N_(120/120)(7 659.88kg/hm~2);氮素积累量表现为N_(0/0)(188.97kg/hm~2)N_(60/0)(229.49kg/hm~2)N_(60/60),N_(120/0)(275.23kg/hm~2)N_(60/120),N_(120/60)(310.00kg/hm~2)N_(120/120)(327.40kg/hm~2);当施氮量过高时,继续增加施氮量对冬小麦籽粒产量和氮素积累量的调节作用不显著。总施氮量相同的条件下,适当提高追肥的施氮比例,有利于提高产量、各器官氮素积累量及各营养器官氮素转移量,其中N_(60/60)与N_(120/0)处理相比,W_(90)和W_(120)灌水水平下籽粒产量分别提高3.92%和4.44%,各器官氮素积累量提高11.43%~27.99%,各营养器官转移量提高18.37%~71.81%;N_(60/120)与N_(120/60)处理相比,各营养器官转移量提高15.06%~39.63%。【结论】综合考虑籽粒产量、氮肥农学利用效率和氮素利用效率等因素,灌水定额为90mm、底肥施氮量60kg/hm~2、追肥施氮量120kg/hm~2,即W_(90)N_(60/120)为本试验条件下泾惠渠灌区冬小麦的最佳水氮组合。  相似文献   

4.
从光合产物积累分配的角度,阐明不同施氮处理下蚕豆苗期根系形态建成的机理。设置了1个对照和5个不同氮素处理,以成胡15和地方品种小米籽为试验材料,对植株形态、叶片光合、根系形态及各器官生物量的积累进行测定和分析。结果表明,蚕豆株高随着施氮量的增加呈先增后降的变化趋势,在N_(150)处理下最大,说明适宜的氮肥施用能促进蚕豆茎秆的生长;分析蚕豆光合特性发现,在N_(150)处理下蚕豆叶片光合参数均显著高于其他施氮处理,材料间均表现为成胡15显著高于小米籽。相关分析表明,叶片光合速率与胞间CO_2浓度、气孔导度、蒸腾速率和叶面积均呈极显著正相关(r=0.889、0.892、0.932、0.890,P0.01),说明适宜的氮肥施用能提高蚕豆叶片的光合能力,而成胡15在不同施氮处理下均表现出较强的光合特性,适应性强,更适宜推广种植;分析蚕豆各器官生物量发现,蚕豆各器官生物量随着氮肥施用量的增加均呈先增后降的变化趋势,而根冠比却不断降低,说明施氮促进了蚕豆地上部的干物质积累,使植株的根冠比降低,而适宜的氮肥施用使植株的光合产物分配更合理,各器官生长也更协调;分析施氮对蚕豆根系生长的影响发现,在N_(150)处理下蚕豆根系形态参数均显著高于其他施氮处理,说明适宜的氮素能促进根系的生长,而过高的氮素将抑制根系的生长,使分配到根系的碳素主要用于氮素的吸收的转运,从而导致植株根系生长受阻;对两蚕豆材料的产量分析发现,在N_(150)处理下2个蚕豆材料的单株产量和其他产量性状均显著高于其他施氮处理,不同材料间表现为成胡15更优。施氮对蚕豆的生长发育有显著的影响,适宜的氮肥施用能提高蚕豆的光合能力,增加光合产物的积累并协调生物量在各器官中的分配,同时也促进了根系的生长,提高了根系的养分吸收能力,为蚕豆的高产稳产提供了必要的物质基础。  相似文献   

5.
为探明不同施氮水平对高丹草生产性能以及土壤无机氮残留的影响,试验以高丹草为材料,设置了N0(0 kg/hm2,对照)、N90(90 kg/hm2)、N180(180 kg/hm2)、N270(270 kg/hm2)、N360(360 kg/hm2)5个施氮量处理,采取随机区组设计。结果表明:①施氮肥可以显著提高苏丹草鲜草产量,其中施氮360 kg/hm2处理的产量达151 878kg/hm2。②随着施氮量的增加干物质生产效率、粗蛋白质生产效率均降低,其中施氮180 kg/hm2处理的高丹草氮肥利用率最高,施氮360 kg/hm2处理比施氮270 kg/hm2处理的氮肥利用率低10%;③土壤无机态氮主要集中在土壤表层(0~60 cm),随着施氮量的增加,土壤氮素残留增加,但主要表现在第1次刈割后,土壤氮素残留在第2次刈割后明显下降。  相似文献   

6.
匀播和施氮量对冬小麦群体、光合及干物质积累的影响   总被引:1,自引:0,他引:1  
为探明匀播方式和施氮量对冬小麦群体、光合及干物质积累的影响,选用'新冬22号'('XD 22')和'新冬46号'('XD 46')为材料,采用裂区试验设计,主区播种方式设匀播(UN)和常规条播(DR)2个处理,副区施氮量设0(N_0)、150(N_(150))、300(N_(300))、450(N_(450))和600(N_(600))kg/hm~2 5个水平,测定冬小麦分蘖成穗、叶面积指数、净光合速率、干物质转运、分配及产量等指标。结果表明:1)一定范围内,随着施氮量增加,小麦单株茎数、成穗数和群体叶面积指数(LAI)增大;与DR相比,UN小麦单株茎数、成穗数、群体叶面积指数也增大,尤其增大了灌浆期叶面积指数。2)随着施氮量增大;匀播提高了小麦叶片净光合速率,尤其提高了冠层中、下部叶片的净光合速率。3)随着施氮量增大,小麦花前茎鞘、叶片干物质积累量、营养器官干物质转运量和转运率、植株营养器官干物质转运对籽粒的贡献率、穗数、穗粒数及产量均先增大后减小;与DR相比,UN提高小麦植株营养器官干物质转运量、转运率、穗数、穗粒数和产量,2个品种于N300和N450水平下产量达到最大;在N_0、N_(150)、N_(300)、N_(450)和N_(600)水平下,'新冬22号'UN比DR分别增产11.79%、5.36%、4.55%、5.24%和8.73%;'新冬46号'分别增产10.98%、7.07%、14.81%、14.55%和16.10%。综上所述,匀播方式改善了群体结构,提高群体中、下层的光合特性,促进营养器官干物质积累及向籽粒中的转移,进而提高产量,尤其施氮量为300和450kg/hm~2增产效果最佳。  相似文献   

7.
旱地土壤有机碳氮和供氮能力对长期不同氮肥用量的响应   总被引:2,自引:0,他引:2  
【目的】揭示旱地土壤有机碳氮、氮素矿化对长期不同氮肥用量的响应及有机碳氮与氮素矿化的关系,进而评价土壤供氮能力,为旱地土壤氮素管理提供参考。【方法】在陕西杨凌2004年开始的旱地小麦氮肥长期定位试验基础上,采集不同氮肥用量(0(N0)、160(N160)、320(N320)kg N·hm~(-2))试验的土壤样品,测定土壤有机碳、有机氮,微生物量碳、氮含量,并采用间歇淋洗好气培养法测定土壤的氮素矿化。【结果】与对照N0相比,施用氮肥(N160、N320)增加了0—10、10—20、20—40、0—40 cm土层有机碳含量,且在小麦播前期和收获期表现不一致;施氮(N160和N320)处理均显著提高了0—10 cm土层有机氮含量,但仅N320处理显著提高了0—40 cm土层土壤有机氮含量;施用氮肥(N160、N320)未改变0—10、10—20 cm土层土壤微生物量氮和微生物量碳含量,仅N320处理显著提高了20—40、0—40 cm土层微生物量氮和微生物量碳含量。0—10 cm土层,土壤氮素矿化量、矿化势(N_0)与施氮量、有机氮含量呈显著正相关,氮素矿化速率常数(k)则与其呈显著负相关。10—20 cm土层,施氮处理(N160、N320)土壤的氮素矿化量均显著高于不施氮处理(N0),增幅分别为27.3%和35.2%,且与施氮量、有机碳、有机氮含量呈显著正相关;氮素矿化势(N_0)随着有机碳增加而显著增加,矿化速率常数(k)则降低。20—40 cm土层,N320能提高氮素矿化量,并与有机氮、微生物量碳呈显著正相关。【结论】合理施氮肥能明显促进旱地0—10和10—20 cm土壤有机碳、有机氮积累,提高土壤氮素矿化能力,降低氮素矿化速率,是提高旱地土壤有机氮、有机碳含量和土壤供氮能力的有效途径。  相似文献   

8.
为明确不同施氮量对新疆冬小麦冠层结构特征及其群体内部光、温变化的影响,于2013—2015年连续2个冬小麦生长周期,在大田滴灌条件下,采用单因素随机区组试验设计,共设置了0(N_0),94.5(N_1),180(N_2),240(N_3),300(N_4)和360kg/hm~2(N_5)6个施氮肥处理,研究了施氮量对冬小麦茎型特征,叶垂直分布及其形态特征,冠层光、温变化规律的影响。结果表明:与N_0处理相比,增施氮肥冬小麦叶片的长、宽及叶片总面积均显著增加。随着施氮量的增加,各叶层LAI、各节间长度和节间粗度均呈"先增后减"的趋势,株高变幅为71.83~85.88cm(2014年)和70.56~85.18cm(2015年);冠层中、下部的透光率和冠层温度均呈"先降后增"的趋势。各处理冠层温度日变化呈"凸"型曲线,均在15:00左右达到峰值,其值以N_3处理最低。2年试验产量均以N_3处理最高,为8 653.22(2013年)和8 415.20kg/hm~2(2014年),分别较同年N_0、N_1、N_2、N_4和N_5处理增产68.01%、32.39%、17.92%、5.34%、10.69%和67.39%、30.81%、19.31%、4.20%、11.49%。本试验条件下,施氮量控制在240kg/hm~2左右,滴灌冬小麦叶型、株型特征良好,冠层光、温适宜,有利于获得高产。  相似文献   

9.
为明确新疆干旱区滴灌春小麦不同施氮量对小麦根系的时空分布、氮素利用率及产量的影响。以‘新春19号’为试验材料,利用田间定位试验,研究在小麦拔节期、抽穗期、开花期及成熟期施氮量0kg/hm~2(N_0对照)、150kg/hm~2(N_1)、300kg/hm~2(N_2)、450kg/hm~2(N_3)4个处理,对小麦根系根长密度、根体积、根质量等在0~100cm土层的垂直分布、动态变化及产量构成因素和产量的影响。结果表明:开花期是各处理小麦根长密度、根体积与根质量变化最为剧烈阶段;0~20cm是各处理根量值(根质量、根体积、根长密度)最大层;施氮量适宜(N_2)时,表层根量增加,氮素利用率最高;施氮量过高(N_3)可获得较高的表层根量和产量,但导致最低的氮素利用率;施氮量过少(N_1)可获得较高氮素利用率,但土层根量和产量较低;氮素严重缺乏(N_0)导致表层土壤根系数量减少,影响养分吸收并导致产量最低。建议在新疆干旱区滴灌春小麦区域采用施氮量300kg/hm~2更有利于实现节肥和高产的统一。  相似文献   

10.
【目的】确定黄瓜氮素营养缺乏诊断的最佳时期、最佳部位和临界浓度。【方法】采用溶液培养法,研究不同氮素水平(0,70,140,210和280 mg/kg)下,黄瓜不同生育期(幼苗期,开花期和结果期)、不同叶位叶片的SPAD值、硝酸还原酶活性(NRA)和叶柄硝态氮含量的变化特征。【结果】黄瓜不同叶位叶片的SPAD值对施氮水平反应的敏感程度存在显著差异。随施氮量的增加,黄瓜各叶位叶片SPAD值均有所增加,但不同叶位叶片SPAD值增长的幅度明显不同;黄瓜叶片的SPAD值、NRA和叶柄硝态氮含量3个参数的变化,因黄瓜生育时期的不同而有明显差异,幼苗期和开花期三者显著相关,开花期叶片SPAD值和叶柄硝态氮含量极显著相关。【结论】黄瓜幼苗期和开花期的第3叶、结果期的第7叶对施氮水平的反应最敏感,可以作为黄瓜氮素缺乏诊断的最佳部位;氮素缺乏的临界浓度为210 mg/kg;诊断的最佳时期为开花期。  相似文献   

11.
覆草对苹果叶片显微结构及光系统功能的影响   总被引:2,自引:0,他引:2  
【目的】探究渤海湾北部冷凉苹果产区,果园覆草管理措施对苹果叶片光合机构及生理功能的影响机制,为果园有机覆盖措施提供理论依据。【方法】以2年生‘寒富’苹果/GM256/山定子为试材,当地自然生长的马唐草(Digitaria sanguinalis(L.)Scop.)为覆盖材料,设覆草处理(1 kg草/盆,C1N0),施用氮肥处理(3.4g尿素/盆,C0N1),覆草+氮肥处理(1 kg草+3.4 g尿素/盆,C1N1)和对照(CK)4个处理,通过盆栽试验模拟果园覆草的土壤管理措施,研究覆盖草残体及配施氮肥各处理对苹果叶片的显微结构、光合色素含量、叶片气体交换参数及光合机构整体功能的影响。【结果】与对照相比,盆栽条件下覆草配施氮肥各处理对苹果叶片显微结构产生影响,其中单独覆草处理及施氮肥处理均可以增加栅栏组织的厚度和栅栏组织/海绵组织的比值,但两处理叶片的海绵组织厚度、叶片厚度与对照差异不显著;覆草+氮肥处理的苹果叶片栅栏组织厚度、海绵组织厚度和叶片厚度分别较对照增加8.45%、12.91%和19.34%,明显提高了叶片栅栏组织/海绵组织的比值。覆草处理可改变叶片的叶绿素含量、叶绿素组分比例和光合气体交换参数,其中叶绿素a含量、总叶绿素含量、叶绿素a/b和叶片净光合速率(Pn)分别提高22.67%、12.71%、23.42%和22.83%;施氮肥处理与覆草+氮肥处理的叶片光合色素含量和光合生理参数高于覆草处理及对照水平,后者的叶绿素a含量、叶绿素b含量和总叶绿素含量分别是对照的1.42、1.04和1.37倍,叶片的净光合速率(Pn)和水分利用效率(WUE)也分别较对照增加41.71%和21.99%。各处理叶片的叶绿素荧光诱导动力曲线和820 nm光吸收曲线出现较为明显变化,经JIP-test荧光数据分析表明,最大光化学效率(Fv/Fm)、捕获的激子将电子传递到电子传递链中QA下游其他电子受体的概率(ψo)和PSⅡ反应中心吸收的光能用于电子传递的量子产额(φEo)表现为C1N1C0N1C1N0CK,叶片光合性能指数(PIABS)、光系统Ⅰ(PSⅠ)最大氧化还原能力(ΔI/Io)也均高于对照水平。各处理均提高了苹果植株的生长发育水平,单独覆草处理的叶片长度与对照无显著差异,而施氮肥处理的叶片长度较对照增加10.63%,覆草处理及施氮肥处理均可明显增加叶片的宽度和叶片面积,苹果植株的干周也分别较对照增加8.82%和12.35%,覆草+氮肥处理的苹果植株叶片长度、叶片宽度、叶面积和干周则分别是对照的1.14、1.19、1.44和1.21倍。【结论】盆栽试验条件下,模拟果园覆草和施用氮肥复合处理可显著提高叶片光合效能,有效促进苹果树生长。  相似文献   

12.
水氮互作对冬油菜氮素吸收和土壤硝态氮分布的影响   总被引:1,自引:0,他引:1  
【目的】针对西北地区冬油菜蕾薹期干旱频发,农民大量灌溉和施氮导致的环境问题,探究西北地区冬油菜蕾薹期适宜的灌溉量和施氮量。【方法】通过2年田间试验,研究分析蕾薹期不同灌溉量(不灌溉(I0)、灌60 mm(I1)和灌120 mm(I2))和施氮量(不施氮(N0)、施氮80 kg·hm-2(N1)和施氮160 kg·hm-2(N2))下,地上部干物质量、籽粒产量、氮素吸收与分配、土壤硝态氮分布和氮素利用效率的差异,其中全生育期不施氮(不基施、不追施)和不灌溉为对照处理(CK)。【结果】蕾薹期灌溉或施氮能显著提高冬油菜的地上部干物质量、籽粒产量、产油量和氮素吸收量。土壤硝态氮峰值所在的土层深度随灌水量的增加而明显下移,且峰值随施氮量的增加而明显增加,表现出明显的淋洗趋势。I1N1处理的土壤硝态氮累积量与I0N0处理间不存在显著差异,但与I2N2相比,却显著降低41.9 kg·hm-2。I0、I1和I2处理土壤硝态氮主要分布在0-40、40-80和80-160 cm。2个冬油菜生长季,I2N1处理的籽粒产量和产油量均最大,平均为3 385和1 429 kg·hm-2;CK最小,平均为1 391和585 kg·hm-2。与I2N1相比,2012-2013年(干旱年)I1N1处理的籽粒产量显著降低,但产油量无显著差异;2013-2014年(平水年)二者的籽粒产量和产油量均不存在显著差异。2年I1N1处理平均籽粒产量和产油量分别为3 264和1 358 kg·hm-2,仅比I2N1降低3.6%和4.7%。I1N1处理的平均氮肥农学利用率比I2N1降低7.2%。【结论】为提高冬油菜籽粒产量和氮素利用效率,减轻土壤硝态氮的下移趋势和下移量,I1N1处理(灌溉60 mm,施氮80 kg·hm-2)为较优的灌溉施氮策略。  相似文献   

13.
基于GIS的吉林省水稻种植区施氮效果及减排潜力分析   总被引:2,自引:0,他引:2  
焉莉  冯国忠  兰唱  高强 《中国农业科学》2017,50(17):3365-3374
【目的】研究不同水稻种植区施氮效果差异,旨在加强氮肥精准养分管理,提高作物产量和肥料效率,从而减少农田氮排放。【方法】通过对2005—2013年吉林省测土配方施肥田间试验中不施氮肥处理(N0P2K2)及3个氮梯度(0.5N_2P_2K_2)、(N_2P_2K_2)、(1.5N_2P_2K_2)处理进行分析,研究不同水稻种植区的产量、氮肥施用效果及氮肥农学利用率,探讨各区域施氮效果及减排潜力。【结果】吉林省各地区水稻产量差异显著,西部地区最高,东部地区最低。在不施氮肥条件下西部地区平均产量可达7.6 t·hm-2,其与中部地区和东部地区的平均产量差可达到2.1和2.2 t·hm-2。施用氮肥后,中部和东部地区最低增产率29.8%(最高59.5%)显著高于西部地区12.6%(最高29.4%)。中部和东部的氮肥利用效率分别为12.2—19.7和12.5—19.5 kg·kg-1,远高于西部地区的8.8—13.1 kg·kg-1。采用最大经济收益法MRTN方法建立氮肥用量与净收益间的函数关系,从而计算各地区最佳施氮量。西部地区、中部地区和东部地区的最佳施氮量分别为114.9、128.9和134.1 kg·hm-2,与推荐施肥相比可减少25.6、18.3和5.3kg·hm-2。在产量没有显著差异的条件下,各地区均可减少氮肥施用量,尤其是西部和中部地区。通过节氮成本和粮食收入核算发现,各地区均可增加经济效益,其中中部地区农民增收显著。在保证产量条件下,采用最佳施肥量,吉林省西部、中部和东部每年可减少氮投入量分别为4 378、7 064和604 t;减少氮排放98.2、158.6和13.6 t。【结论】吉林省西部地区应控制氮肥施用;中部地区为全省减排重点区域;东部地区目前施肥量适中,可以配合其他管理模式消减自然因素的限制,从而提高水稻产量。  相似文献   

14.
氮肥与双氰胺配施对温室番茄生产及活性氮排放的影响   总被引:3,自引:0,他引:3  
【目的】研究田间条件下氮肥与硝化抑制剂双氰胺(dicyandiamide,DCD)配施对温室番茄产量、品质及活性氮损失的影响,明确DCD在棚室蔬菜生产体系中的作用及其硝化抑制效果,为氮肥减施增效提供依据。【方法】试验在河北省永清县番茄主产区北岔口村进行,供试作物为番茄。试验设5个处理,分别为不施氮对照(N0)、传统施氮(Con)、传统施氮+双氰胺(Con+DCD)、减量施氮(Opt)和减量施氮+双氰胺(Opt+DCD),定期对温室番茄追肥期间土壤无机氮、N2O排放量和NH3挥发损失量等指标进行测定。利用流动分析仪测定土壤无机氮含量,气相色谱仪测定N2O排放量,硼酸吸收-标准稀酸滴定法测定NH3挥发量。应用SAS软件对不同处理的产量、品质和各个指标进行方差分析。【结果】氮肥与DCD配施可以提高番茄产量,Con+DCD较Con、Opt+DCD较Opt处理分别提高了20.2%和2.4%,其中Con+DCD产量显著高于Con;同时,Con+DCD和Opt+DCD的氮肥农学效率(NAE)和氮肥偏生产力(PFP)均显著高于Con和Opt,其中Con+DCD较Con、Opt+DCD较Opt处理的NAE分别提高了176.7%和22.3%;此外,配施DCD显著降低了棚室番茄果实的硝酸盐含量,Con+DCD较Con、Opt+DCD较Opt处理分别降低了28.6%和19.3%,其他品质指标处理间差异不显著。氮肥与DCD配施显著降低了NO3--N在0-100 cm土层的累积,Con+DCD和Opt+DCD的NO3--N累积量分别为607.1和441.8 kg·hm-2,较Con(708.4 kg·hm-2)和Opt(524.2 kg·hm-2)降低了14.3%和15.7%。各处理N2O排放通量和NH3挥发速率的峰值分别出现在施肥后第3天和第2天,总体来看,DCD能有效降低N2O排放和NH3挥发损失,Con+DCD较Con、Opt+DCD较Opt处理的N2O累积排放量和NH3挥发累积量分别降低了51.2%、75.4%和17.2%、21.9%。【结论】在本试验条件下,氮肥与DCD配施提高了温室番茄的产量、氮肥农学效率和氮肥偏生产力,减少了土壤NO3--N在0-100 cm土层的累积,降低了N2O排放量和NH3挥发损失量,且以减氮50%并配施DCD(Opt+DCD)的效果最好。因此,在温室番茄生产中,适当减氮并配施DCD是一种科学有效的施肥管理方式。  相似文献   

15.
【目的】 研究盐环境下施氮水平对盐角草幼苗光系统的响应机制。【方法】 采用盆栽试验,研究不同施氮水平对盐环境下生长的盐角草(Saliconia-Europea L.)幼苗叶光系统II (PSII)荧光特性的影响。【结果】 盐角草在重度盐环境条件下,增施氮可以显著增加叶片(同化枝)各项光合色素含量,但当施氮量超过N3 2.4 g/kg时,各项光合色素含量开始下降;施N 0~1.2 g/kg能提高盐环境下生长的盐角草叶潜在光化学效率,当高于1.2 g/kg施N量时,提升效果不显著;施N 0~4.8 g/kg能提高盐环境下生长的盐角草叶PSII的活性,在有效光强0~820 μmol/(m2·s)可以增加叶片光合系统的开放程度,提高盐角草光能利用率,增强叶片光反应中心的耐受性。【结论】 盐环境下施N能够增强盐角草光合系统的活性,提高光能利用率,增强其对盐渍环境的适应性。  相似文献   

16.
氮密互作对不同株型玉米形态、光合性能及产量的影响   总被引:15,自引:2,他引:13  
【目的】阐明不同株型玉米在氮素和密度互作下获得高产的形态生理互利机理,进一步提升密植玉米综合生产力。【方法】2014—2015年,在大田条件下,采用裂-裂区试验设计,以不同株型玉米品种为主区,氮素(N_1:0,N_2:90 kg N·hm~(-2)和N_3:180 kg N·hm~(-2))为裂区、密度(D_1:45 000株/hm2,D_2:60 000株/hm~2和D_3:75 000株/hm~2)为裂裂区,测定了植株形态、叶片光合性能和产量等指标。【结果】施氮对节间长度、叶倾角、叶色值、粒重和产量的影响程度均高于密度调控,茎粗、光合速率和穗粒数对增密响应程度较高。与平展型玉米相比,紧凑型玉米茎粗随密度提高降幅较小,第1—3节间长度对增密响应迟钝,随施氮量增加显著缩短(P_(N2→N3)=0.004—0.028),第4—5节间长度对增密的负响应幅度(10.9%)均高于平展型玉米同节间长度对其的正响应幅度(3.3%)。施氮可降低紧凑型玉米棒三叶叶倾角2.9°±1.1°,增密后,其穗下叶叶倾角降幅较高。紧凑型玉米叶色值对施氮量的响应峰值(N_3)高于平展型玉米(N_2),增密对其光合速率的负效应相对较小,在N_3和D_3处理下,其叶色值和光合速率均高于平展型玉米。紧凑型玉米穗粒数与粒重受氮密调控影响比平展型玉米小,其收获指数较高,且在氮/密处理间差异均不显著(P_(N1→N3)=0.16,P_(D1→D3)=0.12),而平展型玉米在氮/密处理间差异均达显著或极显著水平(P_(N1→N3)=0.03,P_(D1-D3)0.01)。紧凑型玉米和平展型玉米分别在N_3D_3和N_3D_1处理下获得较高产量,增密和施氮对其籽粒产量的贡献比分别是1﹕2.3和1﹕4.0。【结论】与平展型玉米相比,紧凑型玉米茎基部横/纵向生长对氮密协同提高具有较强的适应能力,施氮可降低紧凑型玉米棒三叶叶倾角,提高穗位叶光合性能。紧凑型玉米在高密高氮处理下较好的形态生理协调性保证了生育后期相对较高的物质转化效率,最终获得较高群体产量。  相似文献   

17.
施氮量对春谷农艺性状、光合特性和产量的影响   总被引:6,自引:1,他引:5  
【目的】通过分析不同氮素水平下春谷品种农艺性状、光合特性与产量的变化规律,确定春谷最佳施氮量,并探讨光合特性与产量相关性。【方法】以春谷品种长农35号和晋谷21号为试验材料,采用裂区设计,品种为主区、施氮量为副区,重复3次,小区面积15.0 m2(5 m×3 m),留苗30万株/hm2。共设0(N1)、45(N2)、90(N3)、135(N4)、180(N5)和 225 kg·hm-2(N6)6个氮素水平,40%氮肥作底施,60%在拔节至孕穗期追施。于谷子抽穗后,用日本产叶绿素测定仪SPAD-502(Konica Minolta)测定顶三叶SPAD值,用美国产CIRAS-2光合速率仪(PPSYSTEMS)测定谷子顶三叶的细胞间隙二氧化碳浓度(Ci)、光合速率(Pn)和蒸腾速率(E)。【结果】随着氮素水平的提高,春谷品种的株高、茎粗、穗长呈上升趋势,穗重、穗粒重、旗叶与顶三叶SPAD值、蒸腾速率(E)及光合速率(Pn)表现为先升高后降低,千粒重在各氮素处理间无显著差异,氮水平为90 kg·hm-2 时,以上各指标值(千粒重除外)达到或接近最大,产量趋于稳定,预示氮肥施用量90 kg·hm-2 为春谷最佳施氮量,进一步通过2个春谷品种产量随氮素施用量变化回归方程计算出最高理论产量,方差分析表明两品种最高理论产量和施氮90 kg·hm-2 时产量无显著差异(P长农35号=0.5571、P晋谷21号=0.6632)。综合以上结果,将90 kg·hm-2 施氮量确定为春谷最佳施氮量。春谷光合生理指标与产量相关性分析表明:谷子旗叶蒸腾速率(E)及光合速率(Pn)与产量相关系数分别为 0.87和0.86,顶三叶总蒸腾速率(E)及总光合速率(Pn)与产量相关系数分别为 0.82和0.83,4个相关系数值均达到显著水平。【结论】明确了春谷品种在山西中南部生态气候和土壤条件下的最佳施氮量为90 kg·hm-2,发现谷子开花后旗叶蒸腾速率(E)及光合速率(Pn)、顶三叶蒸腾速率(E)及光合速率(Pn)与春谷产量呈显著正相关。  相似文献   

18.
不同供氮水平下小麦品种的氮效率差异及其氮代谢特征   总被引:10,自引:2,他引:8  
【目的】明确不同氮肥生理利用率小麦品种的氮代谢差异,为小麦高产及合理施肥提供理论依据,实现小麦节氮增产。【方法】采用大田试验方法,从16个小麦品种中筛选出氮素利用效率差异显著的低氮高效型小麦品种漯麦18、豫麦49-198和低氮低效型品种西农509、豫农202。然后进一步分析两类品种在N0(CK),N120(120 kg·hm-2)和N225(225 kg·hm-2)3个供氮水平下各小麦品种的产量、叶片GS活性、可溶性蛋白、游离氨基酸、NO3-及全氮含量等氮代谢指标的差异。【结果】不同供氮水平下,氮肥生理利用率、产量、地上部及籽粒氮素积累量和叶片的GS活性、硝态氮含量、游离氨基酸含量、可溶性蛋白含量、全氮含量等均表现为低氮高效品种漯麦18、豫麦49-198显著高于低氮低效品种西农509、豫农202。增加供氮量,两类品种的产量、地上部及籽粒氮素积累量和叶片GS活性等氮代谢同化物指标均增加,而氮肥生理利用率降低。但两类品种对供氮水平响应不同,与N0相比,增加供氮量,低氮低效品种西农509、豫农202地上部及籽粒氮积累量、叶片的GS活性、硝态氮含量、游离氨基酸含量、可溶性蛋白含量、全氮含量的增幅均高于低氮高效品种漯麦18、豫麦49-198,但是,产量的增幅却显著低于低氮高效品种;氮肥生理利用率的降幅则以低氮高效品种显著高于低氮低效品种。【结论】低氮高效品种漯麦18、豫麦49-198相对于低氮低效品种西农509、豫农202具有更高的产量及氮素利用效率是因为其具有较高的GS活性,从而促进了植株对氮素的吸收与同化,使整个氮代谢过程利用效率提高,获得更高产量。低氮高效品种耐低氮能力较强,增产潜力较大;低氮低效品种对氮肥反应较为敏感,但是其氮素分配利用能力较低。  相似文献   

19.
【目的】明确不同施氮量下春玉米产量形成的光合机制,分析不同施氮量对氮肥利用率、土壤氮素盈余量等的影响,为当地合理施用氮肥,促进春玉米高产高效提供理论参考。【方法】以玉米品种仲玉3号为试验材料,分别于2019、2020年在四川农业大学雅安试验农场的肥效长期定位试验地进行田间试验,设置5个供氮水平,分别为0(不施氮)、90 kg·hm-2(低氮)、180 kg·hm-2(适量氮)、270 kg·hm-2(农民习惯施氮)、360 kg·hm-2(高氮),记为N0、N1、N2、N3、N4。于拔节期、吐丝期和灌浆期测定叶面积,分别计算叶面积指数、光合势;于灌浆期测定穗位叶净光合速率等光合参数以及吐丝期、灌浆期测定叶绿素含量;吐丝期、灌浆期、收获期测定地上部群体干物质积累量,收获时测定产量,分析各部位氮含量,计算土壤氮素盈余量、春玉米氮素利用效率和施氮经济效益。【结果】(1)春玉米产量随施氮量增加先升后持平,2019、2020两年都是N2处理的产量最高,平均为9 746 kg·hm-2,相较于N0、N1处理分别增产179%、28.7%(P<0.05),而N2与N3、N4处理间产量无显著差异。两年产量经线性+平台拟合,平台施氮量为134.8 kg·hm-2,平台产量为9 604 kg·hm-2,此时产投比也最高(12.6)。(2)适量施氮(N2)相比不施氮均显著提高穗位叶叶绿素含量、净光合速率、气孔导度、蒸腾速率以及叶面积指数和光合势等,继续增施氮肥上述指标无显著差异甚至显著降低。(3)结合光合特性与收获期产量的相关性分析及偏最小二乘法分析表明,春玉米光合势、净光合速率、气孔导度、蒸腾速率、叶面积指数、叶绿素a+b与产量均呈极显著正相关关系(P<0.01),且影响春玉米产量的主导因素是叶绿素a+b。(4)收获期籽粒氮素积累量和地上部氮总积累量两年都是随施氮量增加先显著上升,在N2处理后(超过180 kg·hm-2)微弱上升或基本持平;经拟合表明土壤氮素盈余量为0时施氮量为139 kg·hm-2;春玉米氮肥表观利用率两年都是N2处理最高,平均达73.7%,较N1处理提高10.8%(P<0.05),继续增施氮肥,氮肥表观利用率则显著下降,N3、N4处理氮肥表观利用率相较于N2处理分别降低32.9%和48.1%(P<0.05)。【结论】适量施氮能明显提高春玉米叶片光合性能,延缓穗位叶总叶绿素的降解,延长光合作用持续期,优化总叶绿素、叶面积指数和光合势在春玉米产量形成中的作用。同时,适量施氮能显著增加地上部群体干物质积累量和籽粒产量,促进玉米对氮素的吸收与积累,降低土壤氮素残留,提高氮肥表观利用率。综合产量、施肥经济效益、氮肥表观利用率和氮素盈余量等因素,试验区(四川雅安)氮素投入量为139—180 kg·hm-2能维持春玉米的高产高效目标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号