首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
温度对克氏针茅草原生态系统生长季碳通量的影响   总被引:1,自引:0,他引:1  
草地生态系统碳通量的驱动机制研究是碳循环研究的重要方面。利用涡度相关技术观测了克氏针茅草原生态系统的净生态系统碳交换(NEE)、生态系统初级生产力(GEP)、生态系统呼吸(Reco)的变化,探讨了2010年生长季内温度对该系统NEE、GEP和Reco的影响。结果表明,2010年生长季内,克氏针茅草原日尺度上NEE和GEP只出现了1个明显的吸收峰,Reco则呈现倒"U"型变化规律。克氏针茅草原空气温度与NEE、GEP和Reco呈极显著相关关系,气温日较差对该系统碳通量的影响程度较小;土壤温度与NEE、GEP和Reco之间也呈极显著相关关系,土壤温度的增加会同时提高克氏针茅草原生态系统的固碳能力、初级生产力及呼吸作用。空气温度和土壤温度都是影响克氏针茅草原生态系统碳收支的重要驱动因子。  相似文献   

2.
采用涡度相关技术对南方"双季稻-冬闲田"生态系统CO_2通量进行了一年的连续监测,分析了"双季稻-冬闲田"生态系统碳交换[净碳交换量(NEE)、总初级生产力(GPP)和生态系统总呼吸(Reco)]的动态变化及其影响因子。结果表明:南方"双季稻-冬闲田"生态系统NEE具有明显的日变化和季节变化,NEE月平均日变化在生长季表现为较明显的"U"型曲线,不同月份"U"型高度不同;NEE季节变化存在明显的两个吸收期(NEE为负)和三个排放期(NEE为正),NEE在早稻和晚稻的生长季有两个明显的碳吸收期,早稻平均值为-0.58 g C·m~(-2)·d~(-1),最大值出现在2015年6月20日,为-1.77 g C·m~(-2)·d~(-1),晚稻平均值为-1.28 g C·m~(-2),最大值出现在2015年9月19日,为-2.23 g C·m~(-2)·d~(-1);冬闲期存在两个碳排放期,平均值为2.68 g C·m~(-2)·d~(-1)。水稻种植期间白天的净碳交换受光合有效辐射的影响显著,夜间的净碳交换受5 cm土壤温度的显著影响,温度低时的冬闲期温度敏感性高于温度高时的双季稻种植期。全年的NEE总和表现为碳排放,达778.4 g C·m~(-2),GPP为1 643.7 g C·m~(-2),Reco为2 425.8 g C·m~(-2)。因此,南方"双季稻-冬闲田"生态系统有可观的固碳减排潜力。  相似文献   

3.
草地和大气间碳通量的观测有助于理解草原生态系统的碳循环及其控制机理.利用涡度相关技术观测了克氏针茅草原生态系统与大气之间的净生态系统碳交换(NEE)、生态系统初级生产力(GEP)、生态系统呼吸(Reco)的变化,探讨了2008年生长季内土壤温度和水分对克氏针茅草原生态系统NEE、GEP和Reco的影响.结果表明,2008年生长季内,克氏针茅草原日尺度上NEE和GEP都出现了3个峰,二者之间有极显著的相关性,尺eco则呈现倒"U"型变化规律.克氏针茅草原土壤温度与NEE、GEP呈二次曲线的关系,而与Reco呈指数关系,土壤水分的增加会提高克氏针茅草原生态系统的固碳能力、初级生产力及呼吸作用.土壤温度和水分是影响克氏针茅草原生态系统碳收支的重要因子.  相似文献   

4.
本研究于2011年冬季对青藏高原高寒矮嵩草草甸进行不同放牧强度处理,并于2012年5月到10月之间采用Li-6400便携式光合仪和密闭式箱法,对其生长季NEE、Reco和GPP进行分析测定。结果表明,1NEE、Reco和GPP均表现明显的月际变化,NEE在整个生长季的变化趋势呈"U"型,Reco和GPP为单峰型变化趋势;2放牧活动对NEE、Reco和GPP均产生影响,放牧能够促进NEE提早达到最大值;3在中度放牧强度下,高寒草甸的NEE和GPP具有最大值,有利于维持高寒草甸生态系统较高的碳汇水平。  相似文献   

5.
为深入了解农田生态系统碳交换规律以及碳循环的机理和过程,本研究采用涡度相关技术,对湘中地区稻油两熟农田生态系统进行了全年的通量观测,分析了碳通量及其各组分在不同时间尺度上的变化特征,探讨了水稻、油菜生长季内碳通量对主要环境因子的响应。结果表明:稻油两熟农田生态系统净碳交换日尺度变化特征总体呈"U"型单峰曲线变化,季节变化特征呈现单峰双谷"W"曲线变化,存在两个明显的碳吸收期;净碳交换吸收峰值水稻普遍高于油菜,总初级生产力和生态系统呼吸的累积速率水稻高于油菜;稻油两熟农田生态系统全年的净碳交换累积总量为-206.26 g/m^(2),总初级生产力累积总量为1 173.9 g/m^(2),生态系统总呼吸累积总量为967.64 g/m^(2),生态系统的碳利用效率为17.6%,总体表现为碳吸收旺盛;水稻和油菜生长季内碳通量与环境因子的相关性不同,白天的净碳交换与光合有效辐射呈负相关,夜间生态系统呼吸随土壤温度的升高呈指数曲线变化,油菜的温度敏感性要高于水稻。本研究结果可为农田固碳减排提供理论依据和数据支持。  相似文献   

6.
淮河流域典型农田生态系统碳通量变化特征   总被引:8,自引:1,他引:7  
为了准确评价农田生态系统在全球碳平衡巾的作用,利用涡度相关技术对安徽省寿县冬小麦/水稻生态系统进行了碳通量的监测,并在数据校正、剔除和插补的基础上,研究生长季农田净生态系统碳交换(NEE)的变化特征.结果显示,2008年寿县农田生态系统CO_2通量的日变化进程为单峰型,冬小麦和水稻最大的CO_2吸收速率分别为2.45和2.48 mg·m~(-2)·s~(-1).从物候期的角度来看,冬小麦在抽穗期碳通量值最小,乳熟期最大;水稻拔节时期碳通量值最小,即固碳能力最强.冬小麦/水稻生态系统不同月份碳通量月均日变化也呈U型曲线,作物生命活动越旺盛,NEE峰值越高,夜间CO_2排放则在8月份达到最高值.2008年冬小麦和水稻月平均最大日CO_2吸收峰分别出现在4月和8月,分别为1.30和1.07 mg·m~(-2)·s~(-1).冬小麦生态系统NEE的日最大累积吸收量出现在4月16日,可达11.76 gC·m~(-2)·d~(-1),水稻生态系统的出现在8月3日,为10.40 sC·m~(-2)·d~(-1).冬小麦从拔节到成熟时间段内的固碳能力为326.87 gC·m~(-2),水稻从返青到成熟时间段内的固碳能力也达到了300.05 gC·m~(-2).  相似文献   

7.
涡度通量观测可直接获取陆地生态系统与大气之间CO2净交换量(NEE),但深入认识碳循环过程和校验生态系统模型需要不同时间尺度总初级生产力(GPP)和生态系统呼吸(Re)等碳通量数据。利用中国陆地生态系统通量观测与研究网络(ChinaFLUX)中亚热带人工针叶林生态系统2003-2009年的涡度通量和气象观测数据,分析了两种NEE拆分方法对不同时间尺度GPP和Re评估的影响,结果表明:(1)两种拆分方法得到的生态系统碳通量组分(GPP和Re)的季节动态变化一致,都在生长季7、8月份达到峰值;(2)非线性回归模型拆分得到的全年Re和GPP相较于光响应曲线模型分别高出2%-28.6%和1.6%-23%,最大高出317.6 gC·m-2·a-1(2006年),逐月最大差值主要发生在8、9月份;(3)不同时间尺度上,两种方法拆分得到的GPP 和Re之间差值的环境响应因子不同。在广泛采用非线性回归模型进行拆分时,如果当月光合有效辐射接近到905 mol·m-2·月-1,月平均空气饱和水汽压差接近1.18 kPa时,需要考虑使用光响应曲线模型拆分该月通量,结合两种拆分方法以减小全年的误差。  相似文献   

8.
利用黑河计划数据管理中心提供的黑河大满灌区农田生态系统4套涡度相关仪和配套的气象观测站点的数据,在对通量和气象数据预处理前提下,得到完整可靠的CO2通量和配套的气象观测数据,计算4个站点的CO2通量(Fc)、净生态系统交换量(NEE)、总初级生产力(GPP),分析它们的动态变化特征。结果表明,在研究区内,整个生长季Fc介于-2.78~0.60 mg/(m2·s),最小Fc出现在7月中下旬;整个生长期月平均Fc表现为"U"型曲线,在13:00达到峰值[-1.91 mg/(m2·s)]。夜间生态系统的碳通量与地表温度呈显著的指数关系,土壤温度是其主要影响因素;NEE最大碳吸收量出现在7月中旬,达到16.04 g/(m2·d),极个别与临近值变化趋势不同的数值,是由高温季节的强降雨天气导致;最终得到的生长季GPP在7月中旬日积累量达到最高[17.74 g/(m2·d)]。4个站点生长期的GPP总累积量分别是914.68 g/m2、937.03 g/m2、984.18 g/m2、1 002.20 g/m2。  相似文献   

9.
祁连山区是我国西部重要的生态安全屏障和固碳场所。为准确评估祁连山区青海云杉林生态系统生长季碳汇特征,利用涡度相关技术并结合增强回归树模型与结构方程模型,研究生长季其碳通量变化特征及其环境影响机制。结果表明,青海云杉林生长季净生态系统碳交换(net ecosystem carbon exchange,NEE)日变化呈“V”型,CO2通量变化范围在-0.71~0.08 mg CO2·m-2·s-1,季节尺度NEE变化范围在-20.93~11.75 g C·m-2,月均碳吸收量(188.27±17.85) g·m-2,生长季累积碳吸收941.34 g·m-2。增强回归树模型揭示植被指数对净生态系统碳交换量相对贡献率最高,为50.3%,其次是净辐射,为15.9%。结构方程模型表明,植被指数与相对湿度对净生态系统碳交换量的直接作用系数分别为0.61与-0.17。多元逐步回归模型表明植被指数与相对湿度对NEE具有显著影响(R2  相似文献   

10.
采用透明通量箱连接Li-6400光合作用系统的方法,研究了不同土壤水分处理条件下(自然降水+人工灌溉(PRAW)、自然降水(PRCP)和干旱(DROU))紫花苜蓿群体水平上碳水交换特征变量(生态系统净碳交换(NEE)、生态系统蒸散(ET)、水分利用效率(WUE)、生态系统呼吸(Rec)o)的日变化特征及其与环境因子(光合有效辐射(PAR)、土壤温度(T)s、冠层温度(T)c、空气温度(T)a和相对湿度(RH))之间的关系。结果表明:PRAW和PRCP之间的WUE(NEE,ET)日变化差异不显著;PRCP和DROU之间的WUE(NEE)日变化差异显著;PRAW和DROU之间的WUE(ET)日变化差异显著;3种土壤水分处理之间,Reco日变化差异均达显著水平。与PRCP相比,PRAW明显增大了植物对光能的利用效率(初始表观量子效率α),使得Ts成为影响ET日变化的主要因素,且减小了Ts对Reco的影响;与PRCP相比,DROU条件下,NEE与ET显著正相关,在PAR和Tc一定的条件下,随Ta增加ET呈显著线性减小趋势,另外,Reco仅与Tc呈极显著指数增长关系。  相似文献   

11.
为探究浙江凤阳山针阔混交林的碳通量特征及碳通量与各环境因子间的关系,以及为凤阳山针阔混交林生态功能的提升和碳源(汇)评估提供理论依据。采用涡度相关技术对浙江凤阳山针阔混交林生态系统进行为期11个月的碳通量及环境因子的观测。结果表明:凤阳山针阔混交林碳通量呈现明显的日变化和月变化。在白天,生态系统表现为碳汇,夜间,表现为碳源,日半小时碳通量表现为"U"型曲线变化特征,CO_2通量的范围为-0.501~0.842 mg·m~(-2)·s~(-1);月变化的特点是在7月份表现为很强的碳汇效应,整个研究周期中生态系统碳吸收总量高达540.06 g·m~(-2),整体表现为碳汇;净辐射是影响碳通量变化的重要因子。  相似文献   

12.
[目的]探明不同水旱轮作系统对稻田不同土层土壤活性有机碳组分、碳库管理指数、土壤有机碳储量和作物产量的短期影响。[方法]2017年在荆州市江陵县三湖农场开展试验,采用随机区组设计,设置中稻-冬闲(RF)、中稻-油菜(RR)、中稻-小麦(RW)和春玉米-晚稻(MR)4种种植模式。[结果]与RF处理相比,MR处理显著降低了稻田不同层次的土壤总有机碳含量;且RW、RR和MR处理均降低了稻田土壤活性有机碳含量。MR处理有利于碳库活度和碳库活度指数的提高,RR处理则利于稳态碳和碳库指数的提高。不同土层各处理的土壤有机碳储量差异趋势一致,均为RR>RF>RW>MR,与RF处理相比,RR处理土壤有机碳储量增加了8.14%。与RF处理相比,RW、RR和MR处理产量分别增加了46.71%、35.77%和35.33%。[结论]RR模式更有利于稻田土壤有机碳的固持,是适宜在当地推广的水旱轮作模式。  相似文献   

13.
利用LPJ(Lund-Potsdam-Jena)全球动态植被模型,对1971~1998年我国陆地净生态系统碳交换量(NEE)的年总量变化、空间分布格局及变化特征进行了分析。结果表明,近30年来我国的碳汇强度在波动中呈增强趋势,多年平均总碳汇强度为-0.25 Gt.C/a。全国不同区域年均净碳交换量差别显著,整体表现为东部碳汇强而西部弱,除西北部分荒漠草原地区外,全国大部分地区为碳汇区。1985~1998年平均相对于1971~1984年平均,我国不同地区NEE的变化存在较大的空间差异,其中内蒙的中部地区则由原来的弱碳汇区转为弱碳源区,大部分地区碳汇增强。  相似文献   

14.
以浙江省安吉县毛竹林(Phyllostachys edulis)生态系统为研究对象,利用开路涡度相关系统和LI-Cor8150自动观测系统,分析2014年毛竹林生态系统碳通量和土壤呼吸速率变化特征及其影响因子。结果表明,毛竹林土壤呼吸速率日变化为单峰曲线,最高值出现在14:00~16:00,最低值出现在06:00;净生态系统交换量(NEE)存在明显日变化特征,变化趋势为"双峰曲线",峰值分别出现在10:00和12:00;而生态系统呼吸(RE)和土壤呼吸速率呈相同的年变化趋势,为"单峰型",夏季高、冬季低,且均对温度变化较敏感。毛竹林土壤呼吸速率和生态系统呼吸量(RE)主要受高于20℃大气温度和5 cm土壤温度影响,与水分相关关系不显著。  相似文献   

15.
森林是陆地生态系统的主要碳汇。由于植物自身独有的生长特性,其生长状况和生理活动对气候变化的响应会影响森林生态系统碳循环过程。该研究以国际通量网(FLUXNET)注册站点,哈佛森林通量观测塔记录的2000—2012年局域尺度CO2通量和气温观测数据为基础,结合物候模型,分析气温变化对温带森林生态系统CO2通量的影响。结果表明:(1)2000—2012年NEE的最大值为298.13 g·m^-2·a^-1,出现在2010年,除2010和2011年之外,其它年份的年NEE均为负值。(2)NEE、GPP和气温与物候模型的拟合效果较好(R 2>0.8),显示温带混交林森林生态系统光合作用稳定期主要集中在夏季,植被生长状况是温带混交林森林生态系统碳循环的主导因素。(3)气温的变化量时间点(最大点、最小点和0点日期)与NEE、GPP的变化量时间点(最大点、最小点和0点日期)的线性拟合结果显示,气温与CO2通量存在显著的正相关关系(P<0.01),气温的变化影响温带混交林生态系统碳循环过程。  相似文献   

16.
为了明确影响果园生态系统CO_2净交换量(NEE)的主要因素,笔者于2011至2012年利用涡度相关系统对中国西北旱区某葡萄园进行了碳通量观测研究。结果表明:气温、大气CO_2密度、饱和水气压三者与葡萄园小时尺度NEE变化无明显函数关系;冠层导度和净辐射与葡萄园小时尺度NEE变化均呈分段函数关系,当冠层导度低于0.02m·s~(-1)或净辐射在0-200W·m~(-2)间时,NEE随冠层导度或净辐射的增加而增加。影响葡萄园小时尺度上NEE变化的主要因素为冠层导度和净辐射。  相似文献   

17.
为明确不同灌溉方式对陕北沙区马铃薯农田生态系统碳平衡的影响,采用LI-8100土壤碳通量观测系统,研究露地滴灌、膜下滴灌、沟灌、交替隔沟灌、漫灌等5种灌溉方式下马铃薯农田生态系统CO2排放通量的变化特征,估算各生育期碳排放量和生物固碳量,计算农业生产资料碳排放量和净碳值,评价碳平衡状况。结果表明,露地滴灌处理的累积碳排放量较膜下滴灌低3.06%,累积生物固碳量较其他处理高7.36%~22.41%,生产资料碳排放量较其他处理低3.85%~25.87%,净碳值较其他处理高11.28%~52.13%。露地滴灌是增强陕北沙区马铃薯农田固碳减排能力的适宜节水灌溉方式。  相似文献   

18.
河西走廊作为中国西北地区的重要经济发展带,地形多变,生态环境脆弱,在气候急剧变化以及人类活动的影响下,该地区植被水碳通量变化复杂。为探究2000—2020年河西走廊地区的植被生态变化情况,本研究利用参考作物蒸散量(ET0)与植被净初级生产力(NPP)分别表征植被水、碳通量,探究气候以及土地利用变化下2000—2020年河西走廊ET0与NPP的时空变化特征,分析植被水碳通量的主要驱动因素及交互作用。结果表明:在气候趋于暖湿,土地利用变化加速的背景下,2000—2020年ET0与NPP均呈现显著上升趋势,平均相对湿度与日照时长分别是ET0与NPP变化的主要驱动因素,ET0均值空间格局特征为“西高东低”,NPP均值为“南高北低”。气候变化加剧了河西走廊地区的植被蒸散发,人类活动使得21年来河西走廊地区荒漠化土地面积减小,其对区域植被水碳通量的干预作用大,植被生产力显著增加,因此生态环境持续向好。  相似文献   

19.
克氏针茅草原生态系统生长季碳通量变化特征   总被引:4,自引:2,他引:2  
植被和大气之间CO2通量的观测有助于理解陆地生态系统的碳循环及其控制机理.以中国北方典型草原克氏针茅草原为研究对象,以涡度相关法为主要技术手段,探讨了2008年生长季内克氏针茅草原净生态系统碳交换(NEE)的变化特征.结果表明,克氏针茅草原生态系统CO2通量的日变化进程可以依据高峰出现的时间分为两种,一种具有一个吸收高峰,出现在11:00左右,另一种则具有两个吸收高峰,在正午前后出现碳释放现象.2008年克氏针茅草原生态系统最大的CO2吸收速率为-0.4 mg·m-2·s-1.克氏针茅草原在4月和10月的NEE昼夜变化比较平缓,在5-9月日间CO2吸收量和夜间CO2排放量都开始增大,出现了明显的CO2日吸收峰值,但各月的日动态格局差异较大.2008年生长季中7-9月白天碳吸收活动最强,6-9月夜间CO2释放量较大.克氏针茅草原碳通量日累积量在2008年出现了3个明显的碳吸收峰;NEE的日最大累积吸收量和最大累积释放量分别为-2.38和1.47 gC·m-2·d-2,并且出现在植被生长最旺盛的7、8月份.研究表明,温度和水分是影响克氏针茅草原生态系统碳通量变化的重要因子.  相似文献   

20.
为了评价麦田生态系统CO2通量和热通量变化特征以及CO2的收支状况,利用郑州农业气象试验站2009年10月-2010年6月冬小麦生育期内涡度观测数据,分析了麦田CO2通量、热通量变化特征。结果表明:净辐射、潜热通量、显热通量和土壤热通量日变化表现为明显的单峰特征,最大值一般出现在正午前后。其中,净辐射通量、显热通量和土壤热通量的季节变化特征较为一致,均为苗期<中期<后期;潜热通量受到叶面积指数(LAI)的影响,季节变化特征为苗期<后期<中期;CO2的季节变化特征受到LAI、热通量和下垫面特征的共同影响,形成1个CO2吸收高峰的U型曲线,季节变化特征为前期<后期<中期。冬小麦农田CO2、热通量具有明显的日变化和季节变化特征,麦田生态系统总体表现为CO2的汇。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号