首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
异色瓢虫对莲缢管蚜的捕食作用研究   总被引:14,自引:0,他引:14  
异色瓢虫对莲缢管蚜的捕食功能反应符合HollingII型方程,其捕食量随猎物密度的增加而增大,寻找效应随着猎物密度的增加而降低。与此同时,研究结果还表明,异色瓢虫的捕食作用有较强的种内干扰反应,随着捕食者密度的增大,平均捕食量逐渐减少,捕食作用率也相应降低,其干扰反应模型为:E=0.36P-1.3112(3龄幼虫)、E=0.522 4P-1.909 6(4龄幼虫)和E=0.384 5P-1.856 3(成虫)。  相似文献   

2.
异色瓢虫成虫对榆紫叶甲卵的捕食作用   总被引:1,自引:0,他引:1  
为探明异色瓢虫(Harmonia axyridis Pall.)成虫对榆紫叶甲(Ambrostoma quadriimopressum Motschulsky)卵的控制效能,开展了异色瓢虫成虫对榆紫叶甲卵的捕食功能反应与寻找效应研究。结果表明:在供试温度下,异色瓢虫捕食功能反应符合Holling II型方程,χ2适合性检验表明圆盘方程的预测值与实测值相符;在相同温度下,异色瓢虫成虫的捕食量随着猎物密度的增加而增大;搜寻效应随着猎物密度的增加而降低;在供试温度范围内,随温度的升高,异色瓢虫成虫对榆紫叶甲卵的捕食量增加;在相同猎物密度条件下,随异色瓢虫成虫密度的增大,其平均捕食量逐渐减少,捕食作用率也相应降低,捕食作用率(E)与异色瓢虫成虫密度(P)的关系为E=23.648 6P-0.220 9。  相似文献   

3.
异色瓢虫对甘蓝蚜的捕食效应分析   总被引:1,自引:0,他引:1  
研究表明,异色瓢虫成虫(Leis axyridis)捕食甘蓝蚜(Brevicoryne brassicae)的功能反应符合Holling-Ⅱ型模型,为Na= 1.175N/(1+0.00635N),捕食甘蓝蚜的数量随蚜虫密度增加而增大,日最大捕食量为185.2头.幼虫的日最大捕食量分别为一龄14.47头、二龄45.05头、三龄72.46头、四龄153.84头.Watt干扰与竞争模型A=82.832P-0.813,随着捕食者密度的增加,异色瓢虫成虫总的捕食量增加,但平均每一头的捕食量下降.Hassell捕食效应模型拟合结果为E=0.994P-0.916,异色瓢虫成虫之间存在种内干扰.Cain指数D都大于1,异色瓢虫对甘蓝蚜的捕食性有很强的选择性,而对桃蚜的捕食选择性较差.该研究为正确评价异色瓢虫控制甘蓝蚜的作用提供了科学依据.  相似文献   

4.
龟纹瓢虫成虫对亚洲玉米螟卵的捕食作用   总被引:2,自引:0,他引:2  
本试验研究了龟纹瓢虫Propylaea japonica(Thunberg)成虫对亚洲玉米螟Ostrinia furnacalis(Guen啨e)卵的功能反应、寻找效应以及干扰效应。结果表明,其功能反应符合Holling功能反应Ⅱ型,拟合获得其模型为:Na=1.1945N/(1+0.00406N)。日最大捕食量为294粒。龟纹瓢虫寻找效应随自身密度的增加而降低,可用Hassell数学模型描述,模型为:E=0.4497P-0.5777,相互干扰模型为:E=0.7153P-1.0851。3个模型为评价龟纹瓢虫成虫控制亚洲玉米螟的作用提供了科学依据。  相似文献   

5.
龟纹瓢虫成虫对麦红吸浆虫捕食作用研究   总被引:2,自引:0,他引:2  
室温下研究了龟纹瓢虫成虫对麦红吸浆虫的捕食作用.分别用Holling圆盘方程、Hassell-Varley模型和Beddington模型对试验结果进行拟合,建立了其功能反应方程Na=0.6445Nt/(1+0.0196Nt)、寻找效应与自身密度关系模型E=0.1585p-0.4123和E=0.1345/(0.8776+0.1224p).分析表明,龟纹瓢虫成虫对麦红吸浆虫的功能反应属Holling-Ⅱ型,寻找效应随自身密度增大而减小.Beddington模型E=0.1345/(0.8776+0.0041N+0.1224p),进一步表明寻找效应随自身密度和猎物密度增大而呈双曲面下降,这主要由捕食者之间相互干扰所致.  相似文献   

6.
龟纹瓢虫捕食棉蚜的功能反应与寻找效应研究   总被引:9,自引:0,他引:9  
测定龟纹瓢虫Propylaeajaponica(Thunberg)捕食棉蚜Aphis gossypii(Glover)的功能反应和寻找效应.结果表明,其捕食量随猎物的密度增加而上升,当猎物增加到一定水平,捕食量趋向稳定.拟合捕食功能反应曲线,符合Hol1ing功能反应Ⅱ型,其模型为Na=1.1837N/1+0.0059N.日最大捕食量为226头.龟纹瓢虫寻找效应随自身密度增加而降低,模型为E=0.5981×P-1 7081.干扰反应模型为E=0.9733×P-2.076.3个模型为正确评价龟纹瓢虫控制棉蚜的作用提供了科学依据.  相似文献   

7.
本研究测定了中华啮粉蛉Conwentzia sinaca(Yang)成虫对柏小爪螨01igonychus perditus成螨的捕食作用。结果表明:其功能反应属Holling Ⅱ型。根据Holling--Ⅲ型功能反应新模型:Na=a·exp(-b/Nt)找出了最佳寻找密度16.79头;利用Holling(1959)寻找效应(S)与寄主密度(Nt)关系公式S=a/(1+aThN1)计算了寻找效应,结果表明寻找效应随猎物密度的增加而降低;利用Hassell&Varley(1969)模型E=QP^-m和Beddington(1975)模型E=at/[1+btw(P-1)]对中华啮粉蛉成虫寻找效应和自身密度之间的关系进行了模拟,模拟方程分别为:E=0.6229P^-0.9266和E=0.4382/(0.6041+0.3959P),Beddington模型更好地反映了寻找效应和中华啮粉蛉密度之间的关系。寻找效应与中华啮粉蛉成虫自身密度和柏小爪螨之间的关系用Beddington(1975)模型E=at/[1+btw(P-1)]进行描述,模拟方程:E=0.4422/(0.6041+0.003064N1+0.3959P),寻找效应(E)随中华啮粉蛉密度(P)和猎物柏小爪螨密度(Nt)的增大而下降。  相似文献   

8.
 异毛真胸蚜(Euthoracaphis heterotricha Ghosh and Raychaudhuri)是中国一新纪录种蚜虫,本试验测定异色瓢虫捕食异毛真胸蚜的功能反应,采用Holling Ⅱ型方程和Honing Ⅲ型功能反应模型对异色瓢虫1~4龄幼虫和雌雄成虫捕食异毛真胸蚜的作用进行拟合,由模型得出,其寻找效应均随着猎物密度的增加而降低,且在猎物密度相同的情况下,成虫的寻找效应大于幼虫,幼虫随虫龄的增加寻找效应增大。一头异色瓢虫雌、雄成虫及4龄、3龄幼虫对异毛真胸蚜的最佳寻找密度分别为16.64,16.35,14.84,13.02头。当异毛真胸蚜若虫密度N→∞时,每头异色瓢虫1~4龄幼虫及雄、雌成虫对异毛真胸蚜的理论最大日捕食量分别为19.49,25.77,35.09,50.51,74.63,78.13头,表明异色瓢虫对异毛真胸蚜捕食潜力很大,尤其是3,4龄幼虫及成虫对异毛真胸蚜具有较大的捕食潜能。  相似文献   

9.
龟纹瓢虫对麦蚜的捕食功能反应与寻找效应研究   总被引:5,自引:0,他引:5  
1998~ 1 999年试验结果表明 ,龟纹瓢虫 (PropylaeajaponicaThunberg)对麦长管蚜 (MacrosiphumgranariumKriby)的功能反应符合HollingⅡ型模型 ,为Na =0 .63 782N/ 1 +0 .0 1 1 3 8N。捕食麦长管蚜的数量随其密度增加而增加 ,但寻找效应随麦长管蚜密度增加而降低。日最大捕食量为 52 .2头。龟纹瓢虫寻找效应随自身密度增加而降低 ,其数学模型为E =0 .2 56×P- 1.6 0 70 。干扰反应数学模型为E =0 .7564×P- 2 .2 72 7。  相似文献   

10.
在室内条件下,研究了三突花蛛对亚洲玉米螟二龄幼虫的捕食作用及寻找效应。结果表明,三突花蛛对亚洲玉米螟幼虫的捕食效应可拟合HollingⅡ型,拟合方程为Na=1.1359N/(1+0.09534N),日最大捕食量为64.35头;三突花蛛的寻找效应利用Hassell-Varley干扰模型拟合,得出E=0.4063P-0.5891,利用Bed-dington模型拟合获得E=0.4026/[1+0.2382(P-1)],表明寻找效应随三突花蛛自身密度的增大而呈下降趋势。  相似文献   

11.
中华通草蛉幼虫对玉米蚜捕食作用的研究   总被引:4,自引:3,他引:1  
室内研究了中华通草蛉幼虫对玉米蚜的功能反应及三龄幼虫的寻找效应。结果表明,各龄幼虫的功能反应均属HollingⅡ型并获得其数学模型。草蛉幼虫食量随龄次的增加而增大,二、三龄幼虫的a′/Th值明显大于一龄幼虫,三龄幼虫寻找效应用Hassell-Varley干扰模型拟合,得出E=0.2814P-0.3911,寻找效应随自身密度的增大而减小。Beddington模型拟合后获得:E=0.2753/(0.7703+0.2297P),表明寻找效应随自身密度和猎物密度的增大而呈双曲面下降趋势。  相似文献   

12.
红彩真猎蝽对斜纹夜蛾和烟青虫的捕食功能反应   总被引:5,自引:0,他引:5  
在室内条件下研究了红彩真猎蝽雌成虫对斜纹夜蛾和烟青虫2龄幼虫的捕食作用和种内干扰作用。结果表明,红彩真猎蝽雌成虫的捕食量随着斜纹夜蛾和烟青虫幼虫的密度增加而增大,其捕食功能反应符合Holling II型方程,红彩真猎蝽对斜纹夜蛾2龄幼虫的捕食量符合Na=0.4665Nt/(1+0.0036 Nt),对烟青虫2龄幼虫的捕食量符合Na=0.4275Nt/(1+0.0041Nt)。红彩真猎蝽的捕食作用有较强的种内干扰反应,捕食率与个体间相互干扰的关系符合Hassell模型,红彩真猎蝽的捕食量与害虫密度正相关,寻找效应与害虫密度负相关。  相似文献   

13.
室内研究了草间小黑蛛(Erigonidium graminicolum)雌成蛛对菜蚜(Lipaphis erysimi)和温室白粉虱(Trialeurodes vaporariorum)的捕食功能,结果表明,草间小黑蛛对菜蚜成蚜、若蚜及温室白粉虱1龄至2龄初若虫的捕食功能反应属于HollingⅡ型。瞬间攻击力(a)分别为0.689 2、0.538 6、0.512 6,日最大捕食量(1/Th)分别为33.23、9.57、9.35头。草间小黑蛛有较强的种内干扰反应,随着捕食者密度的增大,捕食作用率相应降低;对菜蚜成蚜的捕食作用率(E)与自身密度(P)的函数关系式为E=0.202 6P-0.343 0。相互干扰可降低草间小黑蛛对菜蚜的寻找效应,但对其捕食量影响不大。菜蚜和温室白粉虱若虫的混合种群中草间小黑蛛偏嗜菜蚜。  相似文献   

14.
环斑猛猎蝽的捕食功能反应研究   总被引:2,自引:0,他引:2  
为探讨环斑猛猎蝽的捕食能力,研究了环斑猛猎蝽雌成虫对玉米螟的捕食作用及温度、空间异质性、捕食者密度和猎物密度等对功能反应的影响。结果表明:环斑猛猎蝽雌成虫对玉米螟的功能反应为HollingⅡ型;温度对环斑猛猎蝽的捕食效能影响显著,攻击率(a)、处置时间(Th)和捕食能力(a/Th)与温度之间呈二次函数关系;空间异质性对环斑猛猎蝽捕食作用有很大的影响,捕食者在捕食过程中,叶片数越多,即环境阻力越大,捕食作用率越低;环斑猛猎蝽的种内有较强的干扰作用,随着捕食者和猎物两者密度的增加,相互干扰的作用愈明显,寻找效应值也相应的降低,搜索常数Q为0.8945,干扰系数m为1.0384,E=0.8945P-1.0384。  相似文献   

15.
棉田优势天敌多异瓢虫成虫对棉蚜捕食功能的研究   总被引:2,自引:1,他引:1  
多异瓢虫成虫对棉蚜的捕食功能符合HollingⅡ模型,日最大捕食量为172.6头棉蚜,捕食一头棉蚜需要3.34min,功能系数为1.575;多异瓢虫个体间相互干扰对捕食效应的影响可以用E=0.9795P-1.016模拟;多异瓢虫对自身密度的功能反应可以用A=103.55P-0.6305模拟。  相似文献   

16.
圆果大赤螨对茶红蜘蛛的捕食作用   总被引:1,自引:0,他引:1  
圆果大赤螨对茶红蜘蛛捕食作用的拟合方程符合Holling圆盘方程Ⅱ型,功能反应受到猎物虫态、温度和捕食者密度的影响.圆果大赤螨成螨显著地趋向于取食茶红蜘蛛的幼螨和若螨,日均最高捕食量分别达49.31和38.65头,对卵和成螨的选择性较差.在相同猎物密度条件下,温度为15-30℃时,捕食数量随着温度的升高而增加;温度为(35±1)℃时捕食数量随着温度的升高而减少.温度为(30±1)℃时,捕食数量最大,这一温度与茶红蜘蛛秋季高峰期的温度相吻合.圆果大赤螨在捕食时存在种内干扰反应,随着捕食者密度的增大,日均捕食量逐渐减少,捕食作用也相应减弱,干扰系数m为0.7589,搜索常数Q为0.9983,E=0.9983P-0.7589.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号