首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 500 毫秒
1.
针对果园施肥机工作要求以及投送物料特性,设计一种卧式等螺距螺旋给料搅龙。对装置进行理论计算,并开发设计"螺旋搅龙快速计算系统",简化设计流程,完成螺旋直径为90 mm、螺距为72 mm、螺旋轴外径为36 mm、螺旋转速为85 r/min的给料搅龙设计;使用Solidworks进行三维实体造型,利用Solidworks simulation进行三维实体的静力与模态分析,最大应力小于屈服应力,螺旋给料搅龙第一阶频率,即基本频率为336.59 Hz,满足设计与使用要求。本研究将提高果园施肥机的工作可靠性与稳定性,并可为其他螺旋输送机构的设计提供参考。  相似文献   

2.
针对黑水虻虫沙机械化集料程度低的问题,结合黑水虻养殖特点与虫沙特性,设计一种螺旋式双向集料装置。阐述了该装置的结构组成与工作原理,对其关键部件双向螺旋进行了分析与参数设计。采用离散元软件建立了虫沙-双向螺旋装置的耦合仿真模型,模拟仿真了虫沙的集料输送过程,以螺距、螺旋轴径、螺旋转速、移动速度为试验因素,以质量流率为评价指标进行了四元二次回归通用旋转组合仿真试验。试验结果表明,各因素对质量流率影响主次顺序为螺旋转速螺旋移动速度螺旋轴径螺距。以提高质量流率为目标,运用Design-Expert8.0.6软件进行参数优化,确定了最优组合:螺距153 mm、螺旋轴径29 mm、螺旋转速83 r·min~(-1)、螺旋移动速度66 mm·s~(-1),此时仿真优化得到集料质量流率为1.13 kg·s~(-1),加工物理样机并进行验证试验,得到集料质量流率为1.20 kg·s~(-1),与仿真试验相对误差为5.83%。  相似文献   

3.
揉碎玉米秸秆螺旋输送装置参数试验优化   总被引:1,自引:0,他引:1  
针对农业纤维物料螺旋输送装置输送功耗大、效率低的问题,以比能产量和功耗为输送性能的评价指标,采用Box-Behnken响应面试验方法进行试验,建立各指标与因素间的回归数学模型,并以比能产量最大,功耗最小为优化目标,对影响螺旋输送性能的结构与工作参数进行优化。结果表明,当螺距为300~355mm,螺旋轴转速100~140r/min、喂入量30~70kg/min时,螺旋输送装置能满足较高效率较低能耗输送要求;各因素对比能产量影响的主次顺序为:喂入量、螺距、螺旋轴转速;影响功耗的主次顺序为:喂入量、螺旋轴转速、螺距;螺旋输送装置优化参数组合为:螺距325mm,螺旋轴转速100r/min,喂入量30kg/min。优化后螺旋输送装置的比能产量为0.084 6kg/W,较优化前提高了4.96%,功耗为439.781W,较优化前降低了2.44%。  相似文献   

4.
螺旋式输送装置参数优化研究   总被引:1,自引:0,他引:1  
为了提高农业纤维物料螺旋式输送装置的输送性能,降低输送功耗,提高生产率,利用MATLAB软件对比功耗数学模型进行单变量优化分析,并结合试验验证了理论分析的一致性。试验结果表明:螺旋式输送装置输送性能最佳的取值范围是:喂入量30~70 kg/min、螺距300~355 mm、螺旋轴转速97~137 r/min。以比功耗作为输送性能评价指标,采用3因素3水平的Box-Benhnken响应面分析法进行参数优化试验,得到了影响比功耗各因素的主次顺序:喂入量、螺距、螺旋轴转速。以比功耗最小为优化目标,利用Design-expert的优化模块对试验结果进行分析,确定出各因素对指标影响的最佳参数组合:螺距335 mm、螺旋轴转速117 r/min、喂入量30 kg/min,输送性能优化后比优化前提高了8%,上述成果满足预期设计目标,可为螺旋式输送装置的参数优化和结构改进提供一定的参考和指导。  相似文献   

5.
为提高螺旋式排肥器对颗粒肥料的排肥稳定性与均匀性,采用离散元仿真软件EDEM对排肥器结构参数进行数值模拟并进行仿真试验,分析螺旋叶片直径、螺距和排肥轴转速对排肥器排肥性能的影响,获得排肥器工作参数与排肥量和排肥稳定性变异系数的回归数学模型。仿真试验结果表明:影响螺旋式排肥器排肥量的因素主次依次为排肥轴转速、螺距、螺旋叶片直径,排肥量最大为221.2 g/s,最小为54.76 g/s;影响排肥稳定性变异系数的因素主次依次为排肥轴转速、螺距、螺旋叶片直径,通过Design–Expert 8.0进行参数优化,确定排肥器最优参数组合,即螺旋叶片直径100 mm、螺距60 mm、排肥轴转速15 r/min,此时排肥稳定性变异系数达到最小值,为8.48%,排肥器排肥性能较为稳定均匀。  相似文献   

6.
针对现有水稻排肥器结构复杂、排肥性能不佳的问题,设计了一种集排式双向螺旋送肥离心锥盘式排肥装置。该装置主要由肥料箱、双向螺旋、离心锥盘式排肥装置等部件组成。工作时肥料箱中的肥料由双向螺旋输送至离心锥盘式排肥装置中,在离心锥盘离心力作用下均匀分散并沿锥盘内壁上升至排肥口处排出。确定了排肥装置的关键结构参数:双向螺旋外径100 mm、内径40 mm、螺距90 mm、螺牙厚3 mm、离心锥盘最小半径60 mm、离心锥盘倾角45°。以双向螺旋转速、离心锥盘转速、排肥装置行进速度为试验因素,以排肥均匀性变异系数为评价指标,进行三元二次通用旋转组合试验。结果表明,对排肥均匀性变异系数的影响显著性大小的因素依次为双向螺旋转速、离心锥盘转速、排肥装置行进速度。优化后的最佳参数组合为双向螺旋转速5.27 r/min、离心锥盘转速243.7 r/min、装置行进速度0.66 m/s。优化排肥均匀性变异系数最小值为17.60%。验证试验的排肥均匀性变异系数平均值为17.16%,优化数值解与验证试验结果吻合度较好。  相似文献   

7.
针对现有联合收获机割台搅龙向链耙输送器输送油葵时产生的回带和堵塞问题,对搅龙和链耙输送器关键部件进行优化,设计加工试验台架并进行了试验研究.单因素试验确定搅龙转速最优水平为170r·min-1、搅龙拨板倾角最优水平为12°,输送槽倾角和搅龙底板倾角最优水平为25°,刮板高度最优水平为50mm,输送间隙最优水平为25 mm.根据单因素试验结果搅龙转速、搅龙拨板倾角和输送槽倾角对输送效果影响较大,正交试验表明,影响输送效果的主次因素为输送槽倾角、搅龙转速、搅龙拨板倾角,最优参数组合为搅龙底板倾角和输送槽倾角均为25°,搅龙转速170r·min-1,搅龙拨板倾角12°;该条件下输送率为100%,籽粒脱落率不足0.6%,输送过程稳定可靠,不存在堵塞问题,完全满足油葵联合收获机的作业要求.  相似文献   

8.
稻秸秆对行抛撒装置的结构设计与试验   总被引:1,自引:0,他引:1  
针对南方土壤黏重板结、前作留茬高、易造成油菜机播前作业缠草和壅泥的难题,研制了一款多功能油菜覆草直播机,可实现将稻秸秆收集切碎绕过土壤作业部件后条铺于油菜种植行间。为该播种机设计了一种搅龙双向输送稻秸秆对行抛撒装置,主要由双向输送搅龙、搅龙槽组成。以稻秸秆对行抛撒均匀度变异系数为评价指标,对影响抛撒均匀性的因素(搅龙轴转速、秸秆喂入量、可调抛撒口宽度)进行二次回归正交旋转组合试验,对试验结果进行方差分析和响应曲面分析。结果表明:搅龙轴转速、秸秆喂入量、可调抛撒口宽度3个因素对稻秸秆对行抛撒均匀度变异系数的影响显著;当搅龙轴转速为218 r/min、秸秆喂入量为1.55 kg/s、可调抛撒口宽度为146 mm时,稻秸秆对行抛撒均匀度变异系数为10.4%。  相似文献   

9.
针对铡草机功耗大、生产率低、切割质量差等问题,利用9Z-4C型青贮铡草机搭建切割性能测试试验台,通过分析刀刃切割过程的受力确定刃倾角对切割性能的影响。以主轴转速、刃倾角和喂入量为试验因素进行单因素试验研究得到切割装置切割性能最佳取值范围:主轴转速600~700 r·min-1、喂入量0.9~1.5 kg·s-1、刃倾角60°~70°。以比功耗作为切割性能评价指标,通过Box-Behnken 响应面试验得出各因素对铡草机切割过程中对比功耗影响的主次顺序:主轴转速>喂入量>刃倾角;根据试验结果以比功耗最小为响应值,利用Design-Expery8.0.6软件分析出各因素对比功耗影响的最佳参数组合:主轴转速642 r·min-1、喂入量为1.3 kg·s-1、刃倾角63°,切割性能较优化前提高了14%。该结果可为铡草机切割装置的参数优化和结构改进提供依据。  相似文献   

10.
螺旋输送机在现代化生产中使用广泛,它的使用对提高物料运输效率和实现生产机械的自动化具有重要意义。针对菌料松散度高、黏着性低等特点,从螺旋输送机的结构出发,对螺旋输送机的叶片尺寸、螺距、转速、运输量及运输效率进行分析计算。最终得出,针对由木屑、玉米芯等粉碎后,混合水、生石灰等搅拌而得的菌料,在保证其输送量达到0.35t/h的前提下,其螺旋输送机的螺旋叶片直径为100mm,螺旋轴直径为50mm,螺距为80mm,螺旋轴转速为158r/min。  相似文献   

11.
针对藕田施肥过程中存在的劳动强度高、施肥稳定性及均匀性较低的问题,设计了一种水力喷射式莲藕施肥机,其主要分为供肥装置和水肥混合装置,主要对无轴双螺旋供肥装置进行了设计与分析。通过理论分析确定影响供肥性能参数主要为螺旋转速、直径和导程,结合藕田施肥农艺要求确定上述3项参数的取值范围。利用EDEM对无轴双螺旋供肥性能进行离散元仿真分析,以供肥量均值和供肥量稳定性变异系数为评价指标分别进行单因素试验和回归正交旋转组合试验。单因素试验结果表明:供肥量均值随着螺旋转速、直径和导程的增大而增大,并且具有良好的线性关系,因此可通过调节供肥螺旋转速、直径和导程来改变供肥量均值;供肥量稳定性变异系数随着螺旋转速和导程的增大呈现先降低后升高的趋势,而随着直径的增大而减小。运用Design-Expert软件对回归正交旋转组合试验结果进行分析优化,分别开展仿真试验和台架试验对优化后的参数进行验证。结果表明,当螺旋转速为160 r·min-1,螺旋直径为78 mm,螺旋导程为53 mm时,仿真结果供肥量均值为329.43 g·s-1,供肥量稳定性变异系数为1.43%,台架试验结果分别为341.32 g·s-1和2.34%,满足藕田施肥农艺及供肥稳定性要求。该研究可为螺旋式供肥装置的设计优化及藕田机械化施肥提供参考。  相似文献   

12.
陈娟  王卫清 《安徽农业科学》2011,39(23):14421-14422,14464
设计了一种基于挤压方式的山核桃破壳机械。特殊设计的螺旋碾桶和轧辊配合,实现山核桃破壳。选择轧楞倾角、碾桶螺距和轧辊转速为正交试验的3个因素,并通过极差分析和方差分析,确定轧楞倾角为15°、轧辊转速20 r/m in和碾桶螺距为2倍栅格宽度为其最优组合。试验结果表明,该设备破壳率99.4%、碎仁率为0.6%,改善了破壳质量,并提升了山核桃破壳机械化生产水平。  相似文献   

13.
为南方小面积田块棉秆切碎还田机设计了棉秆切碎还田装置。该装置由切割装置、扶秆装置、除茬装置组成,棉秆由扶秆装置喂入,从上至下依次被切断、除茬。将该装置挂接在土槽试验机上,对影响棉秆切割长度合格率、功耗和除茬率的主要因素,即机具前进速度、锯盘转速和导向槽口宽度进行了单因素试验和回归正交试验。结果表明:影响合格率与除茬率的因素大小依次为机具前进速度、锯盘转速、导向槽口宽度;影响功耗的因素大小依次是锯盘转速、机具前进速度、导向槽口宽度。利用规划求解进行参数优化,在棉杆长度合格率与除茬率分别不低于85%和90%的情况下,锯盘转速为860 r/min,机具前进速度为0.65 m/s,导向槽口宽度为60 mm时,功耗为5.91 k W。  相似文献   

14.
本文从实际设计中提出了确定变螺旋输送器主要参数的方法,文中为变螺距、变直径、变螺旋圈数、功率消耗等参数建立了简便的计算公式。  相似文献   

15.
棉秆重组方材是一种新型生物质代木材料。以棉秆重组方材为试验材料,采用正交试验研究螺钉种类、导孔直径以及拧入深度3个因素对基材端面、侧面及板面握钉力的影响,以期为棉秆重组方材家具螺钉连接提供数据参考。结果表明:棉秆重组方材板面握钉力高于侧面握钉力,端面握钉力均值仅为板面握钉力的57%;导孔直径、拧入深度和螺钉种类3种因素均对棉秆重组方材端面握钉力的影响不显著,螺钉种类对侧面握钉力的影响显著,螺钉种类和拧入深度对板面握钉力的影响显著;在试验范围内,棉秆重组方材(0.75 g/cm3)3个面螺钉接合的最优条件均为:选用开槽沉头木螺钉,导孔直径为3.2 mm,拧入深度为24 mm。在实际产品加工应用中,尽量避免螺钉纵向拧入,应在横纹方向拧入;选择螺距较小、牙顶较宽的螺钉类型,适当减小导孔直径及增大螺钉拧入深度的方法可提高棉秆重组方材家具的螺钉接合强度。  相似文献   

16.
针对南方稻田区域稻烟轮作过程中,由于土壤含水率高导致的培土器抛土、输送土能力差,行驶装置驱动易打滑下陷,烟叶生产过程中机械化培土环节与农艺要求不匹配等问题,提出了采用履带底盘螺旋培土机的解决方案,设计了履带底盘螺旋培土机的行驶机构、变速器及螺旋刀盘培土器等基本结构。通过建立螺旋式培土器的运动学与动力学数学模型和对影响螺旋输土的关键指标进行正交试验研究,试验结果表明,当螺旋刀盘半径为130 mm,螺距为110 mm,刀盘入土深度为30 mm,螺旋刀盘转速为260 r/min时,螺旋式培土刀盘输土量符合设计要求。样机田间试验表明,通过合理选择螺旋培土器的基本参数,螺旋培土器能实现烟田清沟、垄侧松土除草和垄顶送土等功能,螺旋式培土器相对于13组对照测试机型更符合烟田培土农艺要求。  相似文献   

17.
为辅助秸秆纤维制取机高效制取秸秆粗纤维,解决喂料过程中因人工劳动强度大、喂料不连续造成粗纤维加工质量下降等问题,设计竖直向下螺旋强制喂料装置。在喂料装置结构及工作原理分析基础上,以秸秆长度、螺旋轴转速和秸秆含水率为试验因素,以输送量为评价指标,采用3因素5水平二次正交旋转中心组合方法实施试验。结果表明,(1)各因素对大豆秸秆输送量贡献率主次关系为:秸秆长度、螺旋轴转速、秸秆含水率;(2)当参数组合为秸秆长度60~120 mm、螺旋轴转速160 r·min-1、秸秆含水率78%~90%时,满足纤维制取机1 000 kg·h~(-1)喂入量要求。研究为D200型桔杆纤维制取机高效生产优质纤维奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号