首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
以南疆农业废弃物棉花秸秆为原料,采用限氧控温裂解法制备不同温度(200、400和600℃)下的棉花秸秆生物质炭(CSBC200、CSBC400和CSBC600),研究棉花秸秆生物质炭对重金属Pb(Ⅱ)的吸附性能及影响因素,探讨pH、温度、初始浓度和吸附剂投加量对棉花秸秆生物炭吸附Pb(Ⅱ)的影响。研究结果表明:随着热解温度的升高生物炭的pH、比表面积及芳香性增强;不同热解温度制备的棉花秸秆生物炭对Pb(Ⅱ)的快速吸附过程发生在2 h内,吸附在10 h以后逐渐达到平衡状态,准二级动力学吸附模型能较好地描述棉花秸秆生物炭对Pb(Ⅱ)的动力学吸附过程;不同热解温度制备的棉花秸秆生物炭对Pb(Ⅱ)的吸附能力不同CSBC600 CSBC400 CSBC200,且CSBC600远高于其他;CSBC400和CSBC600的吸附过程更符合Freundlich模型,吸附体系既有物理吸附又有化学吸附;棉花秸秆生物炭对Pb(Ⅱ)的吸附最佳pH为5. 00,其饱和吸附量随着体系温度的升高而增加,吸附是自发进行的吸热过程,溶液体系温度升高更有利于吸附的进行。  相似文献   

2.
[目的]探讨热解温度对制备不同类型秸秆生物炭及其吸附去除Cu~(2+)的影响。[方法]以玉米、水稻、芝麻3类秸秆为原料于400~700℃热解炭化制备生物炭,探讨热解温度对秸秆生物炭的结构官能团、比表面积、孔径分布等结构及理化性质的影响,并评价生物炭对Cu~(2+)的吸附性能。[结果]生物炭的pH和比表面积随热解温度的升高而逐渐增大,而产率却逐渐稳定,其中热解温度的变化对水稻和芝麻秸秆生物炭的影响更为明显;此外,生物炭对Cu~(2+)的吸附效率与生物炭的种类和热解温度有关,升高热解温度有利于提高生物炭对Cu~(2+)的吸附去除率,且水稻和芝麻秸秆生物炭的吸附效率明显高于玉米秸秆生物炭,其中700℃下热解所制备的水稻和芝麻秸秆生物炭对Cu~(2+)的去除率可达100%。[结论]该研究可为控制农业环境污染提供科学依据。  相似文献   

3.
以大豆秸秆、高粱秸秆为原料,在350、500、650℃条件下,限氧控温制备生物炭,探讨不同类型生物炭性质及其对溶液中重金属Pb2+的吸附特性;利用2种等温吸附模型(Langmuir、Freundlich模型)研究了不同类型生物炭对Pb2+的吸附行为。结果表明:不同热解温度下的大豆、高粱生物炭,其灰分、挥发分及固定碳存在一定的差异性;随着热解温度的升高,生物炭对Pb2+的吸附性能增强。大豆生物炭对Pb2+的吸附量明显大于高粱生物炭;采用Langmuir和Freundlich分别对吸附数据进行拟合,两种生物炭的吸附行为更符合Freundlich模型,且属于线性等温吸附。  相似文献   

4.
[目的]本文旨在研究热解温度和原料对生物质炭化学性质及官能团的影响,为优化生物质炭的化学性能提供科学依据。[方法]以小麦、水稻和玉米秸秆为原料,在3种温度(350、450和550℃)下进行热解,分别得到小麦秸秆生物质炭(WB350、WB450和WB550)、水稻秸秆生物质炭(RB350、RB450和RB550)和玉米秸秆生物质炭(CB350、CB450和CB550)。分析这些生物质炭的pH值、灰分含量、阳离子交换量(CEC)、全碳和全氮含量,采用红外光谱法和13C核磁共振波谱法分析生物质炭化学结构。[结果]当温度从350℃升至550℃时,小麦、水稻和玉米秸秆炭的pH值和C/N值均显著提高,全氮含量均显著降低;水稻和玉米秸秆炭的灰分含量显著提高,而CEC显著降低。从不同原料来看,当温度为350和550℃时,水稻、玉米和小麦秸秆生物质炭的灰分含量依次递减。同一温度下,玉米秸秆炭的CEC显著高于小麦和水稻秸秆炭的CEC。同一温度下小麦、玉米和水稻秸秆炭的全碳含量依次递减;玉米、水稻和小麦秸秆炭的全氮含量依次递减;小麦、水稻和玉米秸秆生物质炭的C/N值依次递减。随着温度的...  相似文献   

5.
我国南方3种主要作物秸秆炭的理化特性研究   总被引:2,自引:0,他引:2  
以我国南方水稻(D)、棉花(M)和玉米(Y)3种主要作物秸秆为研究对象,研究了400、450、500℃温度下制备的作物秸秆炭的主要理化特性。研究结果表明:生物炭的出产率因热解温度和秸秆种类而异,一般低温出产率高,高温趋于稳定,3种物料灰分含量是DYM;生物炭p H值随热解温度升高而增大,且均呈碱性;比表面积总体上随温度增加而增加;有机碳和总氮含量随热解温度升高而降低,总磷和钾含量随热解温度升高而增加;不同秸秆炭所含官能团基本相同,-OH随温度升高呈减弱趋势,而芳香性结构增加。经综合对比,推选500℃下制备的生物炭较好。  相似文献   

6.
几种生物质热解炭基本理化性质比较   总被引:5,自引:1,他引:4  
生物炭由生物质材料在无氧或缺氧条件下经高温裂解形成,是土壤改良和废弃物处理的良好改良剂。选取五种生物质原料(大豆秸秆、玉米秸秆、水稻秸秆、稻壳和松针,均为农林废弃物),经300、400、500、600和700℃热解2 h,测定其结构及理化性质。研究结果表明,生物炭炭化结构良好清晰;生物质形成生物炭在BET比表面积、T-PLOT微孔容积、p H和阳离子交换量值方面均随热解温度升高而升高,大豆秸秆和玉米秸秆比表面积在700℃时达到最高;平均孔径随热解温度升高有一定程度下降;700℃下水稻秸秆和稻壳形成生物炭具有最高硅含量。除松针炭外,其余各生物炭呈碱性。  相似文献   

7.
在700℃热解条件下制得牛粪源生物炭(DMBC)和木源生物炭(WC)。研究了二者对水体中Pb(Ⅱ)和Cd(Ⅱ)的吸附去除能力,分析了相关污染物去除机理。结果表明:DMBC的比表面积和碳元素含量均远小于WC,但去除效率却远高于后者。FTIR光谱分析和XRD分析表明,DMBC中含有大量矿物组分(如磷等),易与重金属离子生成沉淀。因此在吸附去除过程中发挥主导作用的是沉淀机制。Pb(Ⅱ)和Cd(Ⅱ)在DMBC上的竞争吸附和单组分吸附结果类似,验证了该结论的正确性。而Pb(Ⅱ)和Cd(Ⅱ)在WC上的单组分和双组分吸附结果相差较大,这说明重金属离子在WC上的吸附是以表面吸附为主。以上研究证实,牛粪源生物炭比木源生物炭更适合用于水体中各类重金属污染的去除。  相似文献   

8.
皇竹草生物炭的结构特征及其对Cr(Ⅵ)的吸附性能   总被引:2,自引:0,他引:2  
以皇竹草茎秆为原料,在限氧控温(300、500、700℃)条件下制备生物炭,研究该生物炭的结构特征及其对Cr(Ⅵ)的吸附行为。结果发现,随着热解温度的升高,皇竹草生物炭的产率下降,而灰分、p H呈上升趋势;电镜扫描(SEM)观察可见不同热解温度下所制备的生物炭结构相似,均具多孔和管状结构,但在700℃条件下所制备的生物炭相对300℃下制备的生物炭孔壁变薄,且孔壁有附着物,切面有突起结构。三种温度下制备的皇竹草生物炭对溶液中的Cr(Ⅵ)都具有较好的吸附作用,且500、700℃下制备的生物炭比300℃下制备的生物炭具有更好的吸附效果。在0~1 h之间,三种热解温度下制备的生物炭对铬的吸附量均随着时间的延长而快速增加,当吸附至1 h时,基本达到饱和状态,随后吸附量无明显变化。  相似文献   

9.
不同改性生物炭对溶液中Cd的吸附研究   总被引:2,自引:0,他引:2  
为研究生物炭对溶液中重金属Cd的吸附去除效果,进一步提升生物炭对Cd的吸附性能,以玉米芯、玉米秸秆、木屑为原料,分别在400℃、500℃、600℃和700℃密闭缺氧条件下热解制备生物炭,通过微波改性、Na OH改性方法对生物炭进行改性处理,研究初始浓度、溶液p H、吸附时间等因素对生物炭吸附Cd效果的影响,筛选出适合用于处理镉污染水体的生物炭品种。结果表明:当Cd浓度为100 mg/L时,玉米秸秆-600℃-Na生物炭(B-6-Na)对Cd的吸附可用Langmuir方程拟合,吸附量可达78.7 mg/g,去除率为78.7%,基本达到吸附平衡的时间为60~120 min;当溶液p H达到7时,三种生物炭对Cd吸附率均超过80%以上;600℃条件下经Na OH溶液改性制备的玉米秸秆生物炭能够更好地吸附溶液中的Cd。该研究结果为制备对污染物具有高效、深度净化功能的生物炭方法提供参考,在深入研究生物炭在重金属Cd污染修复的可行性方面提供理论支撑。  相似文献   

10.
采用恒温批处理平衡法研究生物炭热解温度、吸附剂质量、吸附质溶液初始p H值对锰改性玉米秸秆生物炭吸附1,4-苯醌的影响,并进行了动力学和热力学分析。经Mn SO4改性的玉米秸秆生物炭明显提高了对1,4-苯醌的吸附去除能力,同时热解温度的升高能大幅度提高其吸附能力,当吸附剂质量为20 mg时,1,4-苯醌的吸附量和去除率为最佳值。p H=8.0时吸附量最高,达到75.977 mg/g。准二级动力学模型能够更好地描述该吸附过程,其控制步骤为化学吸附。等温吸附试验结果表明,锰改性玉米秸秆生物炭吸附1,4-苯醌的机理主要以多分子层吸附为主,伴随表面单分子层吸附。  相似文献   

11.
两种生物炭对Pb的吸附特性研究   总被引:2,自引:2,他引:0  
以木子壳、米糠为前驱体,650℃制备生物炭,通过扫描电子显微镜、X射线粉末衍射仪和比表面积分析仪等手段表征其物理化学性质,探究粒径、矿物组分、初始浓度及时间等因素对生物炭吸附Pb~(2+)效果的影响。结果表明,木子壳生物炭比表面积虽远小于米糠生物炭,但对溶液中Pb~(2+)有很强的吸附效果,等温吸附曲线符合Langmuir吸附模型,最大吸附量达165.62 mg·g~(-1),明显高于米糠生物炭(58.92 mg·g~(-1))。同时XRD分析显示木子壳生物炭含大量矿物组分且吸附Pb~(2+)后有沉淀生成。  相似文献   

12.
通过研究四种改性生物质炭吸附重金属离子Pb(Ⅱ)和阳离子型染料亚甲基蓝的动力学效应、等温吸附效应、溶液初始pH效应和共吸附效应,探讨微波辅助加热在生物质炭氧化改性中的作用。结果表明,改性稻壳基生物质炭能够有效吸附Pb(Ⅱ)和亚甲基蓝,吸附容量显著高于初始生物质炭。Langmuir方程和Freundlich方程能很好地拟合改性稻壳基生物质炭吸附Pb(Ⅱ)和亚甲基蓝的等温数据(R20.90)。改性生物质炭吸附Pb(Ⅱ)和亚甲基蓝的动力学研究显示,改性稻壳基生物质炭对Pb(Ⅱ)和亚甲基蓝的吸附主要发生在前2 h内,吸附过程符合伪二级动力学模型。随着溶液中pH的增大,Pb(Ⅱ)的去除率迅速增加,并在pH6时达到最大,亚甲基蓝的去除率在实验pH范围内也随pH缓慢上升,在pH为8~9时达到最大并逐渐趋于平衡。Pb(Ⅱ)和亚甲基蓝的共吸附效应表明,随着摩尔比值[MB/Pb(Ⅱ)]的增大,亚甲基蓝抑制了改性稻壳基生物质炭对Pb(Ⅱ)的吸附。微波加热硝酸氧化改性显著提高600℃热裂解生物质炭对Pb(Ⅱ)的吸附性能和300℃热裂解生物质炭对亚甲基蓝的吸附性能。  相似文献   

13.
本研究以竹片、山核桃壳、水稻及油菜秸秆等4种生物质为原料,通过热重分析研究各生物质材料性质与热解特性及生物炭产率之间的关系;并在300~700 ℃下热解6 h制备生物炭,分析生物炭的元素组成及官能团结构。结果表明,在低温段(300~400 ℃),生物质材料中的纤维素、木质素等组分对生物炭产率影响较明显,木质素含量高的材料产率较高;而400 ℃以上则是灰分含量对生物炭产率影响较大,水稻及油菜秸秆由于灰分含量高,其400 ℃以上的生物炭产率高于竹片及山核桃壳。随着炭化温度的升高,生物炭灰分含量增加,无灰基的碳含量增大,稳定性增强;仅水稻秸秆炭由于灰分含量较高,在高温(500~700 ℃)条件下仍有部分含氧官能团存在。综上,生物炭在一定温度下的产率取决于生物质材料来源,而生物炭的稳定性则主要由炭化温度决定,且温度越高,性质越稳定。  相似文献   

14.
【目的】研究不同秸秆转化生物炭对红壤性水稻土养分含量及微生物群落结构的影响差异,为土壤改良和秸秆资源的合理利用提供理论参考。【方法】以水稻和玉米秸秆300℃、400℃和500℃裂解得到的生物炭为添加材料,以发育于第四纪的红壤性水稻土为供试土壤,通过135 d室内培育试验,研究秸秆生物炭添加对红壤性水稻土pH、有机碳和养分含量、土壤微生物生物量碳(MBC)的影响,及其对磷脂脂肪酸(PLFA)表征的微生物群落结构的影响。试验共设7个处理:对照(CK)、添加水稻秸秆炭300℃(RB300)、400℃(RB400)、500℃(RB500)和添加玉米秸秆炭300℃(CB300)、400℃(CB400)、500℃(CB500)。【结果】物料类型和制备温度因素显著影响裂解得到生物炭材料的养分含量和化学性质。培育试验表明,两种秸秆生物炭的添加,平均提高土壤pH值0.16个单位;土壤有机碳、速效磷和速效钾水平,分别比对照增加26.1%、20.6%和281.8%。水稻秸秆炭对土壤速效钾水平促进作用较大,而玉米秸秆炭则主要增加速效磷含量。低温裂解秸秆炭(300℃)的添加,并没有显著影响土壤碱解氮和无机氮含量;而添加RB500和CB500处理的碱解氮分别比对照低10.4%和8.1%,硝态氮含量分别比对照高63.6%和100.7%(P<0.05)。添加生物炭处理,微生物生物量碳和磷脂脂肪酸总量平均比对照增加63.4%和47.5%,但添加300℃秸秆炭处理与对照差异不显著;两种秸秆炭的输入均可以增加革兰氏阴性细菌(G-)、革兰氏阳性细菌(G+)、放线菌和真菌的含量,且不同制备温度处理间的差异表现为300℃<400℃<500℃。主成分分析表明,水稻秸秆炭对土壤微生物群落结构的影响较玉米秸秆炭更为显著;不同温度水稻秸秆炭间,群落结构差异明显,而不同温度玉米秸秆炭间没有区分开来。典范对应分析结果表明,生物炭添加可以通过改变土壤性质,间接影响微生物群落结构;其中,土壤速效磷、有机碳和速效钾含量与土壤微生物群落分布显著相关。【结论】水稻和玉米秸秆炭均可以改良红壤性水稻土的酸度,提高土壤养分含量和微生物量水平;两种秸秆炭的添加均改变了土壤微生物群落结构,其中以水稻秸秆炭的影响更为明显。  相似文献   

15.
Two variable charge soils were incubated with biochars derived from straws of peanut, soybean, canola, and rice to investigate the effect of the biochars on their chemical properties and Pb(II) adsorption using batch experiments. The results showed soil cation exchange capacity (CEC) and pH significantly increased after 30 d of incubation with the biochars added. The incorporation of the biochars markedly increased the adsorption of Pb(II), and both the electrostatic and non-electrostatic adsorption mechanisms contributed to Pb(II) adsorption by the variable charge soils. Adsorption isotherms illustrated legume-straw derived biochars more greatly increased Pb(II) adsorption on soils through the non-electrostatic mechanism via the formation of surface complexes between Pb(II) and acid functional groups of the biochars than did non-legume straw biochars. The adsorption capacity of Pb(II) increased, while the desorption amount slightly decreased with the increasing suspension pH for the studied soils, especially in a high suspension pH, indicating that precipitation also plays an important role in immobilizing Pb(II) to the soils.  相似文献   

16.
固定化改性生物质炭模拟吸附水体硝态氮潜力研究   总被引:7,自引:3,他引:4  
为了有效去除水体硝态氮污染,对两种生物质炭(花生壳炭、小麦秸秆炭)进行铁改性处理,研究其对硝态氮吸附特性,考察吸附时间、硝态氮初始浓度、p H、生物质炭添加量和共存离子对改性生物质炭吸附效果的影响。在此基础上,为解决粉末态生物质炭易随水流失的问题,对改性生物质炭进行固定化处理,探索固定化改性生物质炭对硝态氮吸附潜力。研究结果表明,改性生物质炭对硝态氮的吸附主要发生在前6 h,并在24 h左右达到吸附平衡,其吸附量随着水溶液中硝态氮浓度的上升而升高,改性花生壳炭和小麦秸秆炭对硝态氮最大吸附潜力分别为2674、1285 mg N·kg-1,且酸性至中性条件有利于改性生物质炭对硝态氮的吸附。在20 mg·L-1的硝态氮溶液中,改性花生壳炭和小麦秸秆炭的适宜固液比分别为10、28 g·L-1,其去除率达到80%。当包埋载体海藻酸钠浓度为2%、改性生物质炭含量为0.1 g·m L-1时,固定化改性生物质炭微球成形完整,对硝态氮具有较强的吸附能力,固定化并未显著降低改性生物质炭的吸附性能。因此,固定化改性生物质炭能有效吸附水体硝态氮,为污水处理厂尾水等低污染水硝态氮去除提供有效的技术方法。  相似文献   

17.
纳米羟基磷灰石改性生物炭对铜的吸附性能研究   总被引:1,自引:1,他引:0  
为了提高生物炭对重金属铜的吸附能力,选取小麦秸秆作为原料,将不同比例纳米羟基磷灰石与秸秆混合均匀,在600℃高温限氧条件下制备了羟基磷灰石改性生物炭材料,比较了生物炭和生物炭改性材料对铜的吸附特性,同时分析了两者间的表面特征等。结果表明:热重分析显示,生物炭表面附着纳米羟基磷灰石可以提高生物炭的热稳定性;扫描电子显微镜分析显示,纳米羟基磷灰石可以较为均匀地附着在生物炭表面,但同时会伴随不同程度的聚集现象;接触角测试结果显示,生物炭表面附着纳米羟基磷灰石可降低其疏水性;生物炭和生物炭改性材料对铜的吸附符合伪二级动力学模型,生物炭改性材料可使铜的吸附速率提高7.69%~130.77%;生物炭和生物炭改性材料对不同浓度的铜吸附符合Langmuir等温吸附模型,对铜的最大吸附量分别为32.65 mg·g~(-1)和57.01 mg·g~(-1)。  相似文献   

18.
不同种类生物炭对土壤重金属镉铅形态分布的影响   总被引:15,自引:4,他引:11  
为探讨不同生物炭对土壤镉(Cd)、铅(Pb)复合污染的钝化修复效果,在Cd、Pb复合污染的土壤中施加不同种类、添加量的常见农业废弃物与城市污泥制备的生物炭,分析了土壤中Cd、Pb形态分配的变化,结果表明,添加生物炭可以改变土壤的理化性质,4种生物炭均显著提高了土壤的pH值、阳离子交换量和有机质的含量,与1%添加量相比,4%添加量增加幅度更大,pH、阳离子交换量和有机质含量分别比对照增加了2.7%~11.6%、12.7%~54.3%和252.0%~594.8%。4种生物炭不同程度地降低了重金属的弱酸提取态和可还原物质结合态含量,增加了可氧化物质结合态和残渣态的含量。不同种类生物炭相比,棉花秸秆炭对Cd的钝化效果最佳,其次为玉米秸秆、小麦秸秆和污泥生物炭,其中4%棉花秸秆炭处理下弱酸提取态、可还原物质结合态含量分别下降5.2%、25.5%,可氧化物质结合态、残渣态含量分别增加177.8%、166.7%。生物炭添加同样对土壤中Pb表现出了不同程度的钝化效果,不同生物炭对土壤中Pb的钝化能力表现为玉米秸秆炭小麦秸秆炭棉花秸秆炭污泥生物炭。相关分析表明,添加生物炭导致的土壤理化性质的变化可能是导致土壤重金属形态变化的重要原因。本研究结果表明,施用生物炭可有效改变土壤Cd、Pb赋存形态,促进Cd、Pb由生物有效性高的弱酸提取态、可还原物质结合态,向生物有效性低的可氧化物质结合态、残渣态转化,降低其生物可利用性,从而减轻土壤重金属污染危害。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号