首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
刨花微波干燥特性研究   总被引:1,自引:0,他引:1  
研究了常规微波干燥、热空气干燥、微波-热空气联合干燥下刨花含水率和干燥速率的变化特征,微波功率和刨花形态对含水率变化和干燥速率等特性的影响,计算了刨花在微波干燥下的单位能耗.结果表明:微波干燥比热空气干燥省时约80%;微波功率对干燥特性有显著影响,功率越大,干燥速率越快,干燥时间也越短;微波干燥过程中,刨花形态对干燥速率有影响,表面积越大的刨花,含水率变化越明显,干燥速率越快;微波输出功率与试样量比为4~7W/g时,微波能耗最省;微波干燥过程中易发生能量集中而导致刨花焦化,微波-热空气联合干燥可以防止焦化现象,同时能实现更低的目标含水率,微波-热空气联合干燥比热空气干燥省时约70%.  相似文献   

2.
间歇微波干燥过程中木材内含水率动态分布规律   总被引:2,自引:0,他引:2  
为研究微波干燥过程中木材内部的含水率动态分布规律,以红橡和南方松木材为研究对象,采用无损检测的X射线扫描方法,揭示间歇微波干燥过程中木材内部含水率分布的动态变化规律。结果表明:微波干燥的绝大部分时间内,木材厚度方向存在着整体性内高外低的含水率梯度场;随着干燥过程的进行,木材内部水分更趋均匀,当木材平均含水率在10%以下时,木材内水分分布非常均匀;在整个微波干燥过程中,木材内部虽然发现了部分内层含水率低于外层的情况,但并未出现与常规干燥相反的含水率梯度。  相似文献   

3.
采用CO2超临界流体干燥技术处理山黄麻木材,研究干燥技术对木材尺寸稳定性的影响。结果表明,超临界CO2流体干燥基本可以保持木材原有的尺寸和形状,且干燥后没有变形、变色等干燥缺陷产生;各因素对试验结果的影响顺序为超临界温度〉超临界干燥时间〉超临界压强,超临界温度对试验结果的影响显著,木材端面积变化率随着超临界温度的增加而减小;山黄麻木材最优干燥技术为,超临界温度60℃,超临界压强12MPa,超临界干燥时间3h。  相似文献   

4.
香菇微波真空干燥特性及其动力学   总被引:4,自引:2,他引:2  
探讨了微波功率、真空度和装载量对香菇干燥速率的影响,并对试验数据进行拟合,建立干燥动力学模型.结果表明:香菇微波真空干燥过程按降水速率大小分为加速、恒速和降速3个阶段;干燥速率随微波功率的增大和装载量的减少而明显加快,真空度对干燥速率的影响较小,不同真空度对应的干燥时间较为接近;香菇微波真空干燥的动力学模型满足Page方程.  相似文献   

5.
不同干燥方法对玫瑰花瓣质量的影响   总被引:2,自引:0,他引:2  
研究热风和微波真空干燥的玫瑰花瓣干燥特性曲线和温度变化,比较不同干燥方法对致瑰花辩干燥速率和品质的影响.结果袁明,热风干燥时间长达14h,对保持玫瑰花瓣的形状和颜色均一效果很差;微波真空干燥可以很好地保持玫瑰花瓣的形状和颜色,真空度越高,物料体内水分蒸腾而干燥的速度越快,物料温升越低;随着微波功率增加,干燥时间大大缩短...  相似文献   

6.
空气流速对木材干燥速率的影响   总被引:2,自引:0,他引:2  
分析和讨论了空气流速对木材干燥速率的影响。当外部阻力控制干燥过程时,提高流速可以提高干燥速率,但是当空气流速过高时,木材干燥速率增加的速度要降低。  相似文献   

7.
大径级火力楠木材干燥特性和干燥工艺研究   总被引:1,自引:0,他引:1  
采用百度试验法研究木材干燥特性,利用小型木材干燥试验机分别对25 mm和40 mm厚锯材进行常规干燥试验研究锯材干燥工艺基准。结果表明,火力楠木材的百度干燥缺陷程度较轻,初期开裂等级为2,扭曲变形等级为2,截面变形等级为1,内裂等级为1;木材的干燥速度中等,等级为3。木材含水率为15%时的密度为0.679 g·cm-3,属中等。木材的差异干缩很小,干燥过程产生开裂的趋势较小。采用制定的干燥基准对锯材进行常规干燥,25 mm厚锯材从初含水率87.9%干至终含水率9.1%,干燥用时169.0 h (7.0 d),平均干燥速率0.47%·h-1;40 mm厚锯材从87.5%干至8.5%,干燥用时341.0 h (14.2 d),平均干燥速率0.23%·h-1。2种厚度干燥锯材的平均最终含水率、干燥均匀度、厚度上含水率偏差、残余应力以及可见干燥缺陷方面的指标,均达到了国家标准规定的锯材干燥质量二级及以上级别的要求。本研究编制的2种厚度火力楠锯材的干燥基准合理,可为实际木材的干燥生产提供科学依据。  相似文献   

8.
该文通过对刨花干燥过程中影响因素的研究,以期为刨花干燥工艺的优化设计和过程控制提供理论依据.研究表明,随着气流温度的升高,刨花平均干燥速率增大,单位能耗也相应增加;随着气流速度的提高,刨花平均干燥速率增大,单位能耗逐渐降低;随着刨花初含水率的升高,刨花平均干燥速率加大,单位能耗增加;随着装载量的增大,刨花平均干燥速率大幅减小,单位能耗基本不变,总能耗急剧增加;转筒的运动影响了刨花的干燥,其自转可提高平均干燥速率.实际生产中应根据产量和生产成本,选择合适的干燥条件进行生产.  相似文献   

9.
[目的]探索木材干燥过程中应力与应变的检测方法。[方法]根据数字散斑相关方法的原理设计一种非接触式检测木材干燥应力的方法,用应变速率表示木材干燥过程中应力状态,研究木材表面测点位移与干燥时间、温度和含水率的关系。[结果]木材测点位移平均速率有一个峰值,温度越低,峰值出现得越晚,说明应变滞后于应力;同一材料、同一温度的平均位移曲线,端部的峰值先于中部出现。木材表面测点位移与干燥时间存在对数关系,与含水率变化呈线性关系。随着时间的推移,干燥速率下降,应变速率变小。[结论]影响木材干燥应力的主要因素有干燥应变速率、干燥温度、含水率梯度和温度梯度。  相似文献   

10.
结合超声波和真空干燥的优点,采取超声波一真空协同干燥方法,对核桃楸试件进行干燥。在不同干燥温度、绝对压力、超声波功率和频率的条件下,检测木材干燥过程中内部水分的有效扩散系数,并建立对应条件下的干燥动力学模型。结果表明:超声波~真空协同干燥过程中,木材内部水分有效扩散系数随着温度的升高而增大,而绝对压力对于水分有效扩散系数影响较小;干燥过程中,温度对干燥速率起着主要作用,相同温度、不同压力下木材的干燥速率随着时间的变化趋势一致;通过有效扩散系数和菲克单方向扩散方程得到的干燥模型和实际干燥动力学很接近。  相似文献   

11.
研究鲍鱼微波真空干燥过程中水分含量的变化,分析不同微波功率、真空度、装载量以及盐溶液浸泡浓度对鲍鱼干燥特性的影响,结果表明,鲍鱼微波真空干燥的干燥速率曲线包含加速、恒速及降速3个阶段;研究鲍鱼微波真空干燥的水分比与干燥时间的关系,建立动力学模型,并对模型进行验证,结果表明,鲍鱼微波真空干燥的干燥动力学满足Page模型,该模型预测值与实测值拟合良好,能够准确描述鲍鱼微波真空干燥过程的水分变化规律。  相似文献   

12.
仿刺参微波真空干燥工艺的研究   总被引:2,自引:0,他引:2  
采用微波真空方法干燥仿刺参,研究了不同微波功率密度(1.0、1.5、2.0、2.5、3.0 W/g)、真空度(0.087、0.090、0.093 MPa)和预煮水盐度(80、160、240 g/L)对仿刺参Apostichopus japonicus的干燥速度、产品的物理性质及感官特性的影响。结果表明:微波功率密度对仿刺参的干燥速度和干品品质影响明显,在该微波功率密度下,功率密度平均每增加0.5 W/g,干燥时间缩短22.5 min;真空度和预煮水盐度对仿刺参的干燥速度有一定影响,预煮水盐度对仿刺参干品的外观影响较大。试验表明,用微波真空干燥海参的最佳工艺参数为:微波功率密度2 W/g、真空度0.090 MPa、预煮水盐度80 g/L。在此工艺下干燥的海参色泽和形状保持完好,收缩率较低(32.20%),复水率较高(266.32%),且干燥时间仅为110 min。  相似文献   

13.
微波干燥过程中木材内部水分移动机理初探   总被引:2,自引:0,他引:2  
该文通过测定木材微波干燥过程中内部的温度、压力和分层含水率,着重研究了在微波干燥过程中木材内部温度、水蒸气压力和水分分布状态与变化情况.通过对其相互关系的理论分析,得出了以下研究结果:在微波干燥过程中,木材内的温度分布比较均匀,但在干燥的后期,木材内温度分布的不均匀性有加大的趋势;随着干燥的进行,木材内部含水率梯度逐渐减小,含水率分布更加均匀;在木材干燥的初期,木材表面有水分“积聚”现象;在功率1000W条件下,测定规格300mm×100mm×60mm试材内部压力,纤维长度方向木材内部最大压差为20.1kPa,厚度方向木材内部最大压差为17.9kPa,表明木材微波干燥过程中在厚度和长度方向分别存在明显的蒸汽压力梯度.  相似文献   

14.
微波处理对桉木应力及微观构造的影响   总被引:6,自引:1,他引:5  
为提高人工林桉木的干燥质量及产品附加值,该文针对近年来出现在木材改性领域的微波处理技术在桉木利用中的潜力及途径进行了分析。结合微波处理原理及特点,在初步试验的基础上,对微波处理减小桉木残余生长应力及微波处理对木材微观构造、木材干燥及加工质量的影响等进行了分析,并提出了今后的研究重点,为桉木微波处理的进一步研究提供参考。   相似文献   

15.
采用不同参数组合对胡萝卜片进行了热风与微波组合的干燥试验,研究了胡萝卜的干燥特性,并用多因素正交试验方法,分析了各因素对试验指标的影响.结果表明:用热风与微波组合干燥胡萝卜的最佳工艺参数为热风温度65℃,微波功率为170 W,转换点物料含水率为60%;用热风与微波组合干燥的干燥速率较常规的热风干燥速率提高1.4倍以上,干制品的质量明显提高.  相似文献   

16.
干燥均匀性是影响产品干燥质量的重要指标之一。通过分散微波和使物料在微波腔中运动,研究不同情况下胡萝卜切片的干燥均匀性,并开展单因素实验研究微波搅拌器扇片转速、物料转盘转速、微波功率、胡萝卜质量对干燥均匀性的影响。结果发现:增加微波搅拌扇片转速和物料转盘转速都可以降低干燥不均匀性;微波功率增大会加剧干燥不均匀程度,并会影响最终产品质量;相同形状下不同物料质量会影响干燥均匀性。研究结果为改善胡萝卜片微波干燥均匀性提供了操作工艺参数依据。  相似文献   

17.
该研究根据微波真空干燥过程中木材内部水分和热量的迁移机理,建立了木材微波真空干燥的数学模型,并通过试验对该模型进行了验证。结果表明:木材的微波真空干燥过程可以分为3个阶段,即快速升温加速干燥段(Ⅰ)、恒温恒速干燥段(Ⅱ)和后期升温减速干燥段(Ⅲ),且恒温恒速干燥段在整个干燥过程中所占的比例较大;该模型能较好地模拟木材在微波真空干燥过程中的温度和含水率的变化规律,其模拟精度较高,模拟值与试验值之间相关系数的平方在0.9以上,且含水率变化规律的模拟精度高于温度变化规律的模拟精度。   相似文献   

18.
木材微波加热过程中的表面温度和干燥速度   总被引:1,自引:0,他引:1  
测定并分析了不同微波加热功率,加热时间条件下木材的表面温度、干燥度和含水率的变化规律。结果表明:微波加热功率是影响木材表面温度和干燥速度的主要因素,在不同的微波加热功率下木材表面温度随加热时间的延长而增加,木材含水率随加热时间的延长而减少。微波加热过程中木材温度达到或超过木素和半纤维素的软化温度。  相似文献   

19.
微波真空干燥过程中木材内部的温度分布   总被引:2,自引:2,他引:2  
该文以马尾松木材为研究对象,对微波真空干燥过程中木材内部的温度分布进行了研究.结果表明:在一定的辐射功率(160 kW/m3)和厚度(60 mm)范围内,木材内的温度分布比较均匀,基本不呈现出整体性的温度梯度;在干燥的后期,木材内温度分布的局部不均匀性有加大的趋势;在微波真空干燥过程中,木材内部的温度差是由于微波场和湿木材本身不同部位介电特性的差异引起的,这种不均匀性以局部的形式存在于木材中.   相似文献   

20.
该研究利用T型聚四氟乙烯连接装置将温度传感器和压力传感器与被干材内部的待测点相连,实现了微波干燥过程中对木材内部同一点温度、蒸汽压力的同步测定.主要分析了木材内温度、蒸汽压力在微波场中的变化特性及其相互关系,并对温度、蒸汽压力的变化与微波干燥中出现的内裂、炭化等干燥缺陷的相关性进行了初步探讨.研究结果表明, 木材在微波干燥过程中,温度的变化大致分为3个阶段:快速升温段,恒温段和后期升温段;微波辐射功率增高,升温速度加快,恒温段温度提高,恒温段时间缩短;微波辐射功率提高,木材内部蒸汽压力上升速度相应加快,压力峰值也相应变大,最大压力值保持的时间变短.压力上升速度伴随着温升速度的加快而加快,当温度升高到恒温段时,压力也同时达到最大值.内裂通常出现在木材干燥恒温段初期,主要由于高含水率木材内部过高的蒸汽压力造成;炭化通常出现在木材干燥后期,主要由于低含水率木材高温点的介电特性造成.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号