首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
水分胁迫下水杨酸对油松幼苗叶片膜脂过氧化作用的影响   总被引:11,自引:2,他引:9  
采用盆栽PEG处理的方法研究了水分胁迫条件下水杨酸对油松幼苗膜脂过氧化作用的影响.结果表明,水分胁迫导致油松幼苗SOD和CAT活性降低,O-2积累,由此引起膜脂过氧化,MDA含量增高,质膜相对透性增大.在水分胁迫期间外加水杨酸(SA)处理可提高SOD和CAT活性,降低O-和MDA含量.这表明在水分胁迫条件下SA能够降低膜脂过氧化作用,对膜脂具有保护作用.  相似文献   

2.
水杨酸浸种对水分胁迫下玉米幼苗某些生理过程的影响   总被引:17,自引:0,他引:17  
采用砂基培养的方法 ,研究了水杨酸浸种对水分胁迫下玉米幼苗叶片膜保护酶、光合速率和水分代谢等指标的影响。结果表明 ,与对照相比 ,水杨酸浸种预处理使水分胁迫下的玉米幼苗叶片超氧化物歧化酶 (SOD)、过氧化物酶(POD)、抗坏血酸过氧化物酶 (APX)活性极显著升高 ,超氧阴离子自由基 (O-·2 )产生速率极显著下降 ,脂质过氧化作用减弱。水杨酸浸种提高了水分胁迫下玉米幼苗叶片蛋白质和叶缘素含量及叶绿素a/b值 ,增强了光合速率 ,同时也增强了叶片保水力和干重含水量 ,改善了植株体内的水分代谢。因此 ,水杨酸浸种可减轻水分胁迫对玉米幼苗的伤害。  相似文献   

3.
水分胁迫下水杨酸对小麦幼苗叶片膜脂的保护作用   总被引:2,自引:0,他引:2  
水分胁迫导致小麦幼苗SOD活性降低,O2.-积累,由此引起膜脂过氧化,MDA含量增高.在水分胁迫期间外加水杨酸(SA)处理可提高SOD活性,降低O2.-和MDA含量.这表明在水分胁迫条件下SA能够降低膜脂过氧化作用,对膜脂具有保护作用.  相似文献   

4.
为植物激素水杨酸(SA)与脱落酸(ABA)在水稻抗旱育苗中的应用提供理论依据,采用水培方法研究水杨酸与脱落酸处理后水稻幼苗在PEG胁迫(水分胁迫)下叶片矿质元素含量的变化。结果表明:经SA与ABA处理后水稻幼苗体内的大量元素(N、P、K、Ca、Mg)含量在胁迫4 d和6 d 时显著高于对照(干旱胁迫前未经水杨酸与脱落酸预处理);微量元素Mn和Fe在胁迫6 d 时含量显著高于对照,Se、Zn、Cu含量在胁迫6 d 时含量显著低于对照。SA与ABA处理可提高水分胁迫条件下水稻苗期抗旱性。  相似文献   

5.
为了明确外源水杨酸对盐胁迫下喜树幼苗光合作用的影响,以喜树幼苗为试验材料,以0. 5%Na Cl胁迫为对照,研究了不同浓度和不同方式的水杨酸处理对盐胁迫下喜树幼苗光合作用的缓解效应。通过比较不同处理间喜树幼苗的光合指标、叶绿素含量以及叶氮含量,发现:60 mg·L~(-1)的水杨酸处理对Na Cl胁迫下喜树幼苗光合作用的缓解效果更佳,且喷叶处理的效果优于灌根处理。60 mg·L~(-1)水杨酸喷叶处理下,喜树幼苗的光合作用更为旺盛,其净光合速率和气孔导度等均显著高于对照,喜树幼苗的叶绿素含量为对照叶绿素含量的1. 36倍。通过研究外源水杨酸对Na Cl胁迫下喜树幼苗光合特性的影响,进一步明确了水杨酸缓解喜树幼苗盐害的光合机理,为喜树的抗盐栽培提供了一些理论依据和参考。  相似文献   

6.
水杨酸预处理对水分胁迫下凤仙花幼苗抗氧化能力的影响   总被引:1,自引:0,他引:1  
研究了水分胁迫下凤仙花幼苗叶片的相对含水量(RWC)、电解质渗漏率、H2O2和丙二醛(MDA)含量与超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)活性的变化以及外源水杨酸(SA)预处理对这些参数变化的影响.结果表明:随着水分胁迫时间的延长,对照幼苗叶中的RWC降低,丙二醛、H2O2含量和电解质渗漏增加,SA预处理则延缓了上述参数变化.水分胁迫降低了凤仙花幼苗叶中SOD、POD、CAT和APX活性;SA预处理后明显降低了CAT和APX活性,但在随后的水分胁迫过程中,经过SA预处理的凤仙花幼苗叶片的POD、CAT、APX、SOD活性显著高于对照组植物.结果表明,SA预处理可以诱导较高的抗氧化酶活性,降低H2O2浓度,减轻由水分胁迫造成的氧化伤害,SA可以在一定程度上能缓解水分胁迫对凤仙花幼苗造成的伤害.  相似文献   

7.
以紫御谷幼苗为材料,研究水杨酸对干旱、高温及双重胁迫下紫御谷膜脂过氧化的影响.结果表明,干旱、高温及双重胁迫均能提高叶片的相对电导率和MDA含量,降低SOD、POD、CAT和APX活性;水杨酸处理能降低干旱、高温及双重胁迫下叶片的相对电导率和MDA含量,提高SOD等保护酶活性.水杨酸可能通过提高紫御谷幼苗叶片对干旱、高温及双重胁迫下膜脂过氧化的抗性来诱导其对胁迫的抗逆性.  相似文献   

8.
以一年生桔梗幼苗为试验材料,采用不同浓度的水杨酸(SA)浇灌,通过盆栽试验探究100 mmol/L NaCl胁迫下,外源水杨酸对桔梗幼苗抗氧化能力、光合作用、渗透调节物质等的影响.本实验设NaCl胁迫、单独SA处理为实验组,又在相同浓度的NaCl胁迫下,设置0.1、0.3、0.5、0.7 g/L SA 4个浓度梯度,并设蒸馏水为对照组,研究外源水杨酸对NaCl胁迫下桔梗幼苗生理特性的影响.结果表明,NaCl胁迫与对照组相比显著抑制了桔梗幼苗的生长,通过根施外源物质水杨酸,能够有效减轻NaCl胁迫对桔梗幼苗生长的抑制程度,0.5 g/L SA处理的效果最显著,主要表现在叶片中的SOD、POD、CAT活性显著提高,增幅分别达到34.65%、19.78%、21.39%;可溶性糖、叶绿素含量增加,增幅分别达到71.49%、52.68%;MDA含量减少,降幅为18.56%.综上所述,外源水杨酸对NaCl胁迫下桔梗幼苗有较明显的缓解作用,且水杨酸浓度为0.5 g/L时缓解效果最佳.  相似文献   

9.
外源水杨酸对盐胁迫下水稻幼苗生长的影响   总被引:3,自引:0,他引:3  
研究了水杨酸(SA)处理对盐(NaCl)胁迫下水稻生长的影响,结果表明:在盐胁迫下,水稻幼苗的叶绿素含量减少、抗氧化能力下降,丙二醛含量增加、膜稳定件降低,植株生长受抑制,严重时导致植株死亡;外源水杨酸能改善盐胁迫下水稻幼苗的多种生理指标,提高叶绿素含量及叶绿素a/b值,增加抗氧化能力,提高膜稳定性,从而提高水稻的耐盐能力,且水杨酸对低浓度盐胁迫下的水稻生长缓解效应优于高浓度盐胁迫下的缓解效应.  相似文献   

10.
为了解水杨酸在青稞幼苗抗盐胁迫中的作用,以青稞幼苗为试材,用水培法研究了1 mmol/L水杨酸(SA)预处理对200 mmol/L NaCl胁迫下青稞幼苗叶片相对含水量(RWC)、相对电导率和丙二醛(MDA)、蛋白质、可溶性糖、脯氨酸含量的影响.结果表明:经1 mmol/L SA预处理的青稞幼苗RWC下降较慢,相对电导率、MDA含量显著低于对照组且上升较慢,可溶性糖、蛋白质、脯氨酸含量则显著高于对照组.结论:水杨酸能在一定程度上增强青稞幼苗抗盐胁迫的能力,缓解盐胁迫对其造成的伤害.  相似文献   

11.
外源褪黑素对盐胁迫下芦苇幼苗生长和生理特性的影响   总被引:3,自引:0,他引:3  
为了揭示外援褪黑素提高芦苇抗盐胁迫能力的生理机制,以芦苇幼苗为试验材料,探究叶片喷施外源褪黑素(0.01 mmol/L)对盐胁迫下(150 mmol/L NaCl)芦苇幼苗干物质积累、光合特性、抗氧化酶活性、渗透物质含量以及丙二醛(malondialdehyde,MDA)含量的影响。结果表明:盐胁迫抑制了芦苇幼苗的生长和干物质积累,对幼苗造成严重的生理伤害。喷施外源褪黑素通过增加芦苇幼苗叶片叶绿素含量和提高光合性能,提高超氧化物岐化酶(superoxide dismutase, SOD)、过氧化物酶(peroxidase, POD)和过氧化氢酶(catalase,CAT)的活性,增加脯氨酸、可溶性蛋白等渗透调节物质含量,降低活性氧和MDA含量,缓解盐胁迫对芦苇幼苗的生长抑制。因此,叶面喷施褪黑素通过提高盐胁迫下芦苇幼苗叶片抗氧化酶活性和渗透调节物质积累量,有效清除过量的活性氧,缓解氧化损伤,来增强幼苗的抗盐胁迫能力。  相似文献   

12.
低温胁迫下喷施水杨酸对西红柿幼苗抗寒性的影响   总被引:2,自引:0,他引:2  
张琳  王甲辰  左强  肖强 《现代农业科技》2010,(10):96-97,100
西红柿幼苗喷施水杨酸后,在8℃的低温胁迫下,对伤害程度指标细胞膜透性和丙二醛含量及主要生理生化指标可溶性蛋白质含量和可溶性糖含量进行研究。结果表明,随着低温时间的延长,水杨酸叶面喷施处理在低温胁迫过程中电导率和丙二醛含量均低于未处理的西红柿幼苗;可溶性蛋白质和可溶糖含量上升趋势均明显大于未喷施处理植株,其中水杨酸浓度3.0 mmol/L处理效果最好。  相似文献   

13.
水杨酸对小麦幼苗抗寒性的影响   总被引:3,自引:1,他引:3  
[目的]探讨水杨酸(SA)对小麦幼苗抗寒性的影响及其机理。[方法]以小麦品种郑麦9023为试材,用0.1 mmol/LSA作叶面喷施处理,清水作对照,当小麦幼苗第1片叶展开时,将各组各1/2幼苗分别置于常温(20℃)和低温(4℃)下培养,5 d后对小麦幼苗进行耐寒生理指标测定。[结果]0.1 mmol/LSA显著提高了低温胁迫下小麦幼苗细胞内SOD酶的活性。与低温对照处理的小麦幼苗相比,低温胁迫下0.1 mmol/L SA处理的小麦幼苗的SOD酶活力提高了10.95%,脯氨酸含量增加了42.80%;MDA含量减少了5.00%,膜透性降低了6.00%。[结论]SA显著提高小麦幼苗细胞内SOD酶的活性,增加脯氨酸含量,降低MDA含量,减少了低温对细胞的伤害,增强了小麦幼苗的抗寒性。  相似文献   

14.
采用PEG预处理对辽星1号水稻幼苗进行干旱锻炼,研究其对盐胁迫下水稻幼苗根系的缓解作用。水稻幼苗培养1周后用10% PEG 6000预处理3 d,然后复水3 d,最后用100 mmol·L-1 NaCl胁迫处理3 d。测定水稻幼苗根系的相对含水量、根系活力、丙二醛含量及抗氧化酶(SOD、POD、CAT、APX)活性。结果表明,PEG预处理的水稻幼苗根系MDA含量显著低于盐胁迫的处理(P<005),而幼苗根系相对含水量、根系活力以及抗氧化酶活性则均高于盐胁迫处理。说明PEG预处理可以提高水稻幼苗根系的耐盐性,缓解水稻幼苗在盐胁迫下所受的部分伤害。  相似文献   

15.
外源水杨酸对西葫芦幼苗耐热性的影响   总被引:6,自引:1,他引:5  
李胜  刘建辉 《安徽农业科学》2009,37(7):2848-2850
[目的]研究外源水杨酸(SA)对西葫芦幼苗耐热性的影响。[方法]以翡翠2号西葫芦幼苗为材料,用浓度75μmol/L的水杨酸溶液进行叶面喷施,对照喷蒸馏水,24 h后进行40℃4、8 h的高温胁迫,并测定叶片各生理指标。[结果]经浓度75μmol/L的水杨酸预处理的幼苗,在高温胁迫下,SODP、OD活性和可溶性蛋白含量高于对照,而MDA含量低于对照。[结论]浓度75μmol/L的水杨酸可通过增强抗氧化酶活性,提高西葫芦幼苗的耐热性。  相似文献   

16.
为探讨高温胁迫下不同浓度水杨酸对东北对开蕨耐热性的影响,以2年生的东北对开蕨幼苗为试验材料,用浓度分别为0( CK)、0.5( T1)、1.0mmol · L-1( T2)的水杨酸溶液进行叶面喷施。3 d后置于40℃高温下培养4d。研究不同浓度水杨酸对高温胁迫下东北对开蕨幼苗的可溶性糖质量分数、叶片的相对电导率、游离脯氨酸( Pro)质量分数、超氧化物歧化酶( SOD)活性及丙二醛( MDA)质量摩尔浓度生理指标的影响。结果表明:高温胁迫下水杨酸可以降低东北对开蕨幼苗叶片相对电导率及丙二醛质量摩尔浓度,显著提高SOD活性及可溶性糖质量分数,提高游离脯氨酸质量分数,从而增强该植物耐热性;当处理浓度为0~1.0 mmol· L-1时,水杨酸浓度越高,上述效果越明显。  相似文献   

17.
低温下外源水杨酸对水稻幼苗抗氧化酶系的影响   总被引:15,自引:0,他引:15  
用水杨酸(SA)预处理水稻幼苗,能够提高水稻幼苗的抗寒性。0.5 mmol/L SA预处理水稻幼苗降低了低温胁迫期间水稻幼苗体内过氧化氢(H2O2)和丙二醛(MDA)的含量及超氧阴离子(O2-.)的产生速率;同时酶活性分析表明,SA预处理后水稻幼苗在低温胁迫下超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性较低温对照上升,而抗坏血酸过氧化物酶(APX)活性较低温对照下降。研究结果表明,常温下用0.5 mmol/L SA预处理水稻幼苗,提高了抗氧化酶的活性,从而提高了水稻幼苗的抗寒性。  相似文献   

18.
高温胁迫下外源物质对黄瓜幼苗生理生化特性的影响   总被引:1,自引:0,他引:1  
[目的]研究采用外源物质处理减轻高温对黄瓜幼苗的伤害的最佳条件。[方法]采用不同浓度的水杨酸、草酸、脯氨酸对黄瓜种子和幼苗分别进行浸种和叶面喷施处理,研究黄瓜幼苗在高温胁迫下体内SOD、CAT、MDA、Pro、电导率以及叶片水势的变化及其与外源物质的关系。[结果]高温胁迫条件下,2.00 mmol/L水杨酸浸种处理能显著缓解高温胁迫对幼苗造成的伤害,恢复温度24和48 h后该处理仍有显著效果;叶面喷施处理中,0.10 mmol/L水杨酸能显著提高幼苗的耐热性,其次是0.05 mmol/L水杨酸和5.00 mmol/L草酸;水杨酸、草酸和脯氨酸叶面喷施处理具有时效性,在3 d之内效果明显。[结论]水杨酸2.00 mmol/L浸种处理以及0.10 mmol/L叶面喷施对缓解高温胁迫对幼苗造成伤害的效果最显著。  相似文献   

19.
外源水杨酸对水稻幼苗抗冷性的影响   总被引:3,自引:0,他引:3  
以1.0、1.5、2.0、2.5、3.0、3.5 mmol/L水杨酸和蒸馏水处理一叶一心期的水稻幼苗,然后分别置于5℃和自然条件下生长,研究了水杨酸对水稻幼苗抗冷性的影响。结果表明:在5℃低温胁迫下,经1.5 mmol/L水杨酸处理的水稻幼苗的脯氨酸含量、叶绿素含量和SOD活性均高于仅用蒸馏水处理的对照,而丙二醛含量则低于对照,表明一定浓度的水杨酸可增强水稻幼苗的抗冷性,但外源水杨酸处理对冷胁迫下水稻幼苗生长存在"低促高抑"的效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号