首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sea surface temperatures (SSTs) in the cold tongue of the eastern equatorial Pacific exert powerful controls on global atmospheric circulation patterns. We examined climate variability in this region from the Last Glacial Maximum (LGM) to the present, using a SST record reconstructed from magnesium/calcium ratios in foraminifera from sea-floor sediments near the Galápagos Islands. Cold-tongue SST varied coherently with precession-induced changes in seasonality during the past 30,000 years. Observed LGM cooling of just 1.2 degrees C implies a relaxation of tropical temperature gradients, weakened Hadley and Walker circulation, southward shift of the Intertropical Convergence Zone, and a persistent El Ni?o-like pattern in the tropical Pacific. This is contrasted with mid-Holocene cooling suggestive of a La Ni?a-like pattern with enhanced SST gradients and strengthened trade winds. Our results support a potent role for altered tropical Pacific SST gradients in global climate variations.  相似文献   

2.
A high-resolution western tropical Atlantic sea surface temperature (SST) record from the Cariaco Basin on the northern Venezuelan shelf, based on Mg/Ca values in surface-dwelling planktonic foraminifera, reveals that changes in SST over the last glacial termination are synchronous, within +/-30 to +/-90 years, with the Greenland Ice Sheet Project 2 air temperature proxy record and atmospheric methane record. The most prominent deglacial event in the Cariaco record occurred during the Younger Dryas time interval, when SSTs dropped by 3 degrees to 4 degrees C. A rapid southward shift in the atmospheric intertropical convergence zone could account for the synchroneity of tropical temperature, atmospheric methane, and high-latitude changes during the Younger Dryas.  相似文献   

3.
A sea surface temperature (SST) record based on planktonic foraminiferal magnesium/calcium ratios from a site in the western equatorial Pacific warm pool reveals that glacial-interglacial oscillations in SST shifted from a period of 41,000 to 100,000 years at the mid-Pleistocene transition, 950,000 years before the present. SST changes at both periodicities were synchronous with eastern Pacific cold-tongue SSTs but preceded changes in continental ice volume. The timing and nature of tropical Pacific SST changes over the mid-Pleistocene transition implicate a shift in the periodicity of radiative forcing by atmospheric carbon dioxide as the cause of the switch in climate periodicities at this time.  相似文献   

4.
The tropical ocean plays a major role in global climate. It is therefore crucial to establish the precise phase between tropical and high-latitude climate variability during past abrupt climate events in order to gain insight into the mechanisms of global climate change. Here we present alkenone sea surface temperature (SST) records from the tropical South China Sea that show an abrupt temperature increase of at least 1 degrees C at the end of the last glacial period. Within the recognized dating uncertainties, this SST increase is synchronous with the B?lling warming observed at 14.6 thousand years ago in the Greenland Ice Sheet Project 2 ice core.  相似文献   

5.
Sea-surface temperature from coral skeletal strontium/calcium ratios   总被引:1,自引:0,他引:1  
Seasonal records of tropical sea-surface temperature (SST) over the past 10(5) years can be recovered from high-precision measurements of coral strontium/calcium ratios with the use of thermal ionization mass spectrometry. The temperature dependence of these ratios was calibrated with corals collected at SST recording stations and by (18)O/(16)O thermometry. The results suggest that mean monthly SST may be determined with an apparent accuracy of better than 0.5 degrees C. Measurements on a fossil coral indicate that 10,200 years ago mean annual SSTs near Vanuatu in the southwestern Pacific Ocean were about 5 degrees C colder than today and that seasonal variations in SST were larger. These data suggest that tropical climate zones were compressed toward the equator during deglaciation.  相似文献   

6.
Coral strontium/calcium ratios have been used to infer that the tropical sea surface temperature (SST) cooled by as much as 6 degrees C during the last glacial maximum. In contrast, little or no change has been inferred from other marine-based proxy records. Experimental studies of the effect of growth rate and the magnitude of intraspecific differences indicate that biological controls on coral skeletal strontium/calcium uptake have been underestimated. These results call into question the reliability of strontium/calcium-based SST reconstructions.  相似文献   

7.
Establishing what caused Earth's largest climatic changes in the past requires a precise knowledge of both the forcing and the regional responses. We determined the chronology of high- and low-latitude climate change at the last glacial termination by radiocarbon dating benthic and planktonic foraminiferal stable isotope and magnesium/calcium records from a marine core collected in the western tropical Pacific. Deep-sea temperatures warmed by approximately 2 degrees C between 19 and 17 thousand years before the present (ky B.P.), leading the rise in atmospheric CO2 and tropical-surface-ocean warming by approximately 1000 years. The cause of this deglacial deep-water warming does not lie within the tropics, nor can its early onset between 19 and 17 ky B.P. be attributed to CO2 forcing. Increasing austral-spring insolation combined with sea-ice albedo feedbacks appear to be the key factors responsible for this warming.  相似文献   

8.
We present a 271-year record of Sr/Ca variability in a coral from Rarotonga in the South Pacific gyre. Calibration with monthly sea surface temperature (SST) from satellite and ship measurements made in a grid measuring 1 degrees by 1 degrees over the period from 1981 to 1997 indicates that this Sr/Ca record is an excellent proxy for SST. Comparison with SST from ship measurements made since 1950 in a grid measuring 5 degrees by 5 degrees also shows that the Sr/Ca data accurately record decadal changes in SST. The entire Sr/Ca record back to 1726 shows a distinct pattern of decadal variability, with repeated decadal and interdecadal SST regime shifts greater than 0. 75 degrees C. Comparison with decadal climate variability in the North Pacific, as represented by the Pacific Decadal Oscillation index (1900-1997), indicates that several of the largest decadal-scale SST variations at Rarotonga are coherent with SST regime shifts in the North Pacific. This hemispheric symmetry suggests that tropical forcing may be an important factor in at least some of the decadal variability observed in the Pacific Ocean.  相似文献   

9.
The Paleocene-Eocene Thermal Maximum (PETM) has been attributed to a rapid rise in greenhouse gas levels. If so, warming should have occurred at all latitudes, although amplified toward the poles. Existing records reveal an increase in high-latitude sea surface temperatures (SSTs) (8 degrees to 10 degrees C) and in bottom water temperatures (4 degrees to 5 degrees C). To date, however, the character of the tropical SST response during this event remains unconstrained. Here we address this deficiency by using paired oxygen isotope and minor element (magnesium/calcium) ratios of planktonic foraminifera from a tropical Pacific core to estimate changes in SST. Using mixed-layer foraminifera, we found that the combined proxies imply a 4 degrees to 5 degrees C rise in Pacific SST during the PETM. These results would necessitate a rise in atmospheric pCO2 to levels three to four times as high as those estimated for the late Paleocene.  相似文献   

10.
A tropical Pacific climate state resembling that of a permanent El Ni?o is hypothesized to have ended as a result of a reorganization of the ocean heat budget approximately 3 million years ago, a time when large ice sheets appeared in the high latitudes of the Northern Hemisphere. We report a high-resolution alkenone reconstruction of conditions in the heart of the eastern equatorial Pacific (EEP) cold tongue that reflects the combined influences of changes in the equatorial thermocline, the properties of the thermocline's source waters, atmospheric greenhouse gas content, and orbital variations on sea surface temperature (SST) and biological productivity over the past 5 million years. Our data indicate that the intensification of Northern Hemisphere glaciation approximately 3 million years ago did not interrupt an almost monotonic cooling of the EEP during the Plio-Pleistocene. SST and productivity in the eastern tropical Pacific varied in phase with global ice volume changes at a dominant 41,000-year (obliquity) frequency throughout this time. Changes in the Southern Hemisphere most likely modulated most of the changes observed.  相似文献   

11.
Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion   总被引:1,自引:0,他引:1  
Magnesium/calcium data from Southern Ocean planktonic foraminifera demonstrate that high-latitude (approximately 55 degrees S) southwest Pacific sea surface temperatures (SSTs) cooled 6 degrees to 7 degrees C during the middle Miocene climate transition (14.2 to 13.8 million years ago). Stepwise surface cooling is paced by eccentricity forcing and precedes Antarctic cryosphere expansion by approximately 60 thousand years, suggesting the involvement of additional feedbacks during this interval of inferred low-atmospheric partial pressure of CO2 (pCO2). Comparing SSTs and global carbon cycling proxies challenges the notion that episodic pCO2 drawdown drove this major Cenozoic climate transition. SST, salinity, and ice-volume trends suggest instead that orbitally paced ocean circulation changes altered meridional heat/vapor transport, triggering ice growth and global cooling.  相似文献   

12.
A 30,000-year paleotemperature record derived from noble gases dissolved in carbon-14-dated ground water indicates that the climate in lowland Brazil (Piaui Province, 7 degrees S, 41.5 degrees W; altitude, 400 meters) was 5.4 degrees +/- 0.6 degrees C cooler during the last glacial maximum than today. This result suggests a rather uniform cooling of the Americas between 40 degrees S and 40 degrees N. A 5.4 degrees C cooling of tropical South America is consistent with pollen records, snow line reconstructions, and strontium/calcium ratios and delta(18)O coral records but is inconsistent with the sea-surface temperature reconstruction of CLIMAP (Climate: Long-Range Investigation, Mapping and Prediction). On the basis of these results, it appears that the tropical Americas are characterized by a temperature sensitivity comparable to that found in higher latitudes.  相似文献   

13.
An empirical correlation between marine barite (BaSO4) accumulation rate in core-top sediment samples from two equatorial Pacific transects (at 140°W and 110°W) and the estimated primary productivity of the overlying water column were used to evaluate glacial to interglacial changes in productivity. Fluctuations in barite accumulation rates down-core indicate that during glacial periods of the past 450,000 years, the productivity in the central and eastern equatorial Pacific was about two times that during intervening interglacial periods. This result is consistent with other evidence that productivity was high in the eastern and central equatorial Pacific during the last glacial.  相似文献   

14.
Model-derived equilibrium line altitudes (ELAs) of former tropical glaciers support arguments, based on other paleoclimate data, for both the magnitude and spatial pattern of terrestrial cooling in the tropics at the last glacial maximum (LGM). Relative to the present, LGM ELAs were maintained by air temperatures that were 3.5 degrees to 6.6 degrees C lower and precipitation that ranged from 63% wetter in Hawaii to 25% drier on Mt. Kenya, Africa. Our results imply the need for a approximately 3 degrees C cooling of LGM sea surface temperatures in the western Pacific warm pool. Sensitivity tests suggest that LGM ELAs could have persisted until 16,000 years before the present in the Peruvian Andes and on Papua, New Guinea.  相似文献   

15.
利用1979—2014年的NOAA/NASA海表温度延长重构数据和国家台站的观测数据,采用经验正交函数(EOF)方法,从赤道年平均海温出发,分析热带海温的时空变化特征以及印度洋—太平洋海温对我国年降水量的影响。结果表明,1979—2014年热带地区年平均海温为26℃,海温暖区主要集中在印度洋和西太平洋的赤道地区。热带海温距平时空变化特征:第1特征向量场在印度洋海温表现为全区一致型,太平洋海温表现为弱El Nio(La Nia)现象,时间系数与年降水量主要在新疆、西藏、青海、甘肃和河套地区为显著的正相关关系;第2特征向量场在太平洋海温表现为El Nio(La Nia)现象,印度洋海温表现为偶极子型,时间系数与年降水量在西藏和黄河中游地区为显著的正相关关系,在东北东部和长江以南地区为显著的负相关关系;第3特征向量场在太平洋海温表现为弱El Nio(La Nia)现象,印度洋海温表现为南北型,时间系数与年降水量在西藏、新疆、福建和东北西北部为显著的负相关关系。  相似文献   

16.
Uplifted coral terraces at Huon Peninsula, Papua New Guinea, preserve a record of sea level, sea-surface temperature, and salinity from the penultimate deglaciation. Remnants have been found of a shallow-water reef that formed during a pause, similar to the Younger Dryas, in the penultimate deglaciation at 130,000 +/- 2000 years ago, when sea level was 60 to 80 meters lower than it is today. Porites coral, which grew during this period, has oxygen isotopic values and strontium/calcium ratios that indicate that sea-surface temperatures were much cooler (22 degrees +/- 2 degreesC) than either Last Interglacial or present-day tropical temperatures (29 degrees +/- 1 degreesC). These observations provide further evidence for a major cooling of the equatorial western Pacific followed by an extremely rapid rise in sea level during the latter stages of Termination II.  相似文献   

17.
Glaciation in the humid tropical Andes is a sensitive indicator of mean annual temperature. Here, we present sedimentological data from lakes beyond the glacial limit in the tropical Andes indicating that deglaciation from the Last Glacial Maximum led substantial warming at high northern latitudes. Deglaciation from glacial maximum positions at Lake Titicaca, Peru/Bolivia (16 degrees S), and Lake Junin, Peru (11 degrees S), occurred 22,000 to 19,500 calendar years before the present, several thousand years before the B?lling-Aller?d warming of the Northern Hemisphere and deglaciation of the Sierra Nevada, United States (36.5 degrees to 38 degrees N). The tropical Andes deglaciated while climatic conditions remained regionally wet, which reflects the dominant control of mean annual temperature on tropical glaciation.  相似文献   

18.
A simulation with a coupled atmosphere-ocean general circulation model configured for the Last Glacial Maximum delivered a tropical climate that is much cooler than that produced by atmosphere-only models. The main reason is a decrease in tropical sea surface temperatures, up to 6 degrees C in the western tropical Pacific, which occurs because of two processes. The trade winds induce equatorial upwelling and zonal advection of cold water that further intensify the trade winds, and an exchange of water occurs between the tropical and extratropical Pacific in which the poleward surface flow is balanced by equatorward flow of cold water in the thermocline. Simulated tropical temperature depressions are of the same magnitude as those that have been proposed from recent proxy data.  相似文献   

19.
A 194-year annual record of skeletal delta(18)O from a coral growing at Malindi, Kenya, preserves a history of sea surface temperature (SST) change that is coherent with instrumental and proxy records of tropical Pacific climate variability over interannual to decadal periods. This variability is superimposed on a warming of as much as 1.3 degrees C since the early 1800s. These results suggest that the tropical Pacific imparts substantial decadal climate variability to the western Indian Ocean and, by implication, may force decadal variability in other regions with strong El Nino-Southern Oscillation teleconnections.  相似文献   

20.
A 420-year history of strontium/calcium, uranium/calcium, and oxygen isotope ratios in eight coral cores from the Great Barrier Reef, Australia, indicates that sea surface temperature and salinity were higher in the 18th century than in the 20th century. An abrupt freshening after 1870 occurred simultaneously throughout the southwestern Pacific, coinciding with cooling tropical temperatures. Higher salinities between 1565 and 1870 are best explained by a combination of advection and wind-induced evaporation resulting from a strong latitudinal temperature gradient and intensified circulation. The global Little Ice Age glacial expansion may have been driven, in part, by greater poleward transport of water vapor from the tropical Pacific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号