首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
新疆阿克苏市郊区滴灌枣园蒸散及环境影响因素   总被引:1,自引:0,他引:1  
为探究阿克苏市郊区沙地滴灌枣园蒸散特征,基于涡度系统和自动气象站设备,获取2017年阿克苏市郊区沙地滴灌枣园的蒸散数据,同时结合常规气象观测数据,分析了枣园全生育期蒸散变化。结果表明,不同外界条件下,沙地枣园不同生育期蒸散量日动态均呈现先增大后减小变化特征,灌水当天比晴天变化幅度略高;阴天蒸散幅度低于晴天蒸散幅度;雨天在降雨停止后的蒸散量变化幅度高于晴天;降雨后1d与晴天蒸散量变化特征基本一致。枣树各生育期日动态蒸散启动与停止时间不同;2017年不同生育期蒸散量大小为:果实发育期花期成熟期萌芽期;不同时间尺度下环境因子对蒸散影响由强到弱的排序为太阳辐射饱和水汽压差空气温度相对湿度地表土壤温度风速土壤热通量(0.5h时间尺度),空气温度地表土壤温度叶面积指数太阳辐射饱和水汽压差土壤含水率相对湿度土壤热通量(1d时间尺度);对蒸散量与气象因子、叶面积指数与土壤含水率在不同时间尺度下拟合多元线性回归方程。阿克苏市郊区滴灌枣园日蒸散动态受不同外界条件影响,果实发育期和花期为枣园蒸散量最大的关键期,建议保证枣树果实发育期和花期给水量充足;叶面积指数与土壤含水率可以提高拟合方程的拟合度,为该地区滴灌沙地枣园灌溉提供参考。  相似文献   

2.
基于2014年双季晚稻生长季稻田气象要素的观测资料,应用波文比-能量平衡法对双季晚稻不同生育期稻田蒸散量进行了估算。研究表明:双季晚稻拔节期-成熟收获期,稻田蒸散量随着晚稻生育期呈逐渐减少的趋势;晴天稻田蒸散量日变化呈单峰曲线,与太阳净辐射量存在着极显著的相关性。双季晚稻拔节期-成熟期日平均蒸散量为7.78 mm/d,该段时期内稻田总蒸散量为451.16 mm。基本能反映稻田季节和日变化特征,但因波文比通量观测系统本身因素的影响,双季晚稻田蒸散量估算值与实际值存在着一定的误差,有待进一步改进和研究。  相似文献   

3.
基于2014年双季晚稻生长季稻田气象要素的观测资料,应用波文比-能量平衡法对双季晚稻不同生育期稻田蒸散量进行了估算。研究表明:双季晚稻拔节期-成熟收获期,稻田蒸散量随着晚稻生育期呈逐渐减少的趋势;晴天稻田蒸散量日变化呈单峰曲线,与太阳净辐射量存在着极显著的相关性。双季晚稻拔节期-成熟期日平均蒸散量为7.78 mm/d,该段时期内稻田总蒸散量为451.16 mm。基本能反映稻田季节和日变化特征,但因波文比通量观测系统本身因素的影响,双季晚稻田蒸散量估算值与实际值存在着一定的误差,有待进一步改进和研究。  相似文献   

4.
SIMETAW模型在辽西北地区的验证与应用   总被引:2,自引:0,他引:2  
 【目的】验证美国加州大学开发的作物蒸散量-SIMETAW(simulation of evapotranspiration of applied water)模型在中国辽西北地区应用的有效性。【方法】利用辽西北地区的作物、土壤和气候数据运行模型,将当地主要作物蒸散量的模型模拟值与田间实测值进行对比分析;同时,在模型验证的基础上模拟分析当地主要作物生育期内蒸散量和所需灌水量的多年平均情况。【结果】主要作物生育时期内模型模拟的蒸散强度曲线和实测曲线变化趋势基本一致,蒸散总量模拟值和实测值比较接近,相对误差均在10%之内。利用模型模拟当地玉米、大豆和谷子生育期内蒸散量多年平均值分别为514.15、449.64和389.12 mm,所需灌水量分别为208.4、220.93和116.17 mm。【结论】SIMETAW模型在辽西北地区对玉米、大豆和谷子蒸散量的模拟比较准确,模型有效,可以进一步应用该模型开展作物的水分管理研究和指导灌溉。  相似文献   

5.
林分蒸散耗水量测定方法述评   总被引:58,自引:6,他引:52  
该文介绍了测定林分蒸散耗水量的方法,对主要测定方法的原理、特点和适用范围进行了分析.比较蒸散的测定方法,水文法适用性较强,它不受时间、气象条件、林分条件的限制,可用于一周以上较长时段的总蒸散量测定,还可测定各种林分、流域的蒸散耗水量;微气象法适用林相整齐均一的林分,可对林分或区域森林蒸散进行测定;植物生理法可测定树种个体耗水量;蒸发器适用测定树木个体蒸散及林地土壤蒸发量,条件易于控制,测量精度高;气候学方法适用估算一个地区潜在蒸散量和相对耗水量;遥感方法可用来估算区域森林蒸散量.  相似文献   

6.
基于生育期划分的芦苇蒸散量气候学计算与分析   总被引:1,自引:0,他引:1  
芦苇是一种典型的湿地挺水植物,为了研究芦苇各生长阶段的蒸散耗水规律变化,根据2012年和2013年在石佛寺人工湿地进行的芦苇观测试验,采用有序聚类样本法,结合实际观测资料划分湿地内主要挺水植物芦苇的生育期,利用PenmanMonteith公式及单作物系数法计算2013年芦苇全生育期的实际蒸散量,并应用偏相关法分析了影响芦苇湿地实际蒸散量的气象因子。结果表明:芦苇划分为4个生育阶段,分别为初始期(4月20日~5月10日)、生长期(5月11~6月7日)、稳定期(6月8日~9月13日)和枯萎期(9月14日~10月18日);芦苇湿地全生育期单位面积上的累积蒸散量为684.51mm,4个生育阶段的蒸散强度呈先递增后下降趋势,其中稳定期蒸散强度最大为4.37mm·d-1,4个生育阶段的蒸散量亦明显大于自由水面蒸发量,说明芦苇的存在增加了湿地水分的扩散;不同气象因子对各生育阶段的实际蒸散量影响程度不同,太阳辐射和风速是影响石佛寺芦苇湿地实际蒸散量变化的主要因子,相对湿度和气温影响作用相对较小,而实际水汽压对实际蒸散量的影响甚微,说明了湿地水分的扩散与气象因子的作用息息相关。  相似文献   

7.
《山西农业科学》2017,(10):1651-1654
以2010—2015年6个完整小麦生育期的田间试验数据为材料,采用情景分析方法,运用CERES-Wheat模型分析了晋中地区冬小麦需水量与产量的关系以及小麦蒸散量、土壤蒸发量与产量的关系,比较不同生育期需水量和产量的最佳预测模型。结果表明,该模型对冬小麦生长季的大田蒸散量预测较为准确;晋中地区小麦生长期灌溉水和土壤水的需要量为318 mm;在计算山西省中部地区多年平均蒸散量值和降雨量差值的基础上得出,该地区小麦返青期、拔节期和灌浆期小麦平均需水量分别为250,310,343 mm。  相似文献   

8.
吉林省中西部地区玉米需水量的计算分析   总被引:1,自引:0,他引:1  
根据Thornthwaite计算土壤蒸散量的方法,求算了吉林省中西部地区十市(县)玉米生育期的土壤潜在蒸散量及其生育期间逐月和不同生育阶段玉米的需水量。通过对同期实际降水及与土壤和蒸散有关的有效降水的分析,讨论了玉米各主要生育阶段的日耗水强度及需水量。同时计算了各地区玉米生长期间需水及土壤供水之间的平衡关系。结果表明,中部地区土壤供水基本能满足玉米生长的需要,而西部地区土壤供水远不能满足玉米生长的需要。  相似文献   

9.
利用河南省99个气象站1965—2018年逐日气象资料,采用Penman-Monteith公式计算逐日参考作物蒸散量,利用气候倾向率、相关分析和偏相关分析等方法分析河南省参考作物蒸散量的季节变化特征,并对其主要影响因子进行探讨。结果表明,季参考作物蒸散量呈减少趋势,各季节参考作物蒸散量的气候倾向率绝对值由大到小依次为夏季、秋季、冬季、春季。春季参考作物蒸散量为北高南低的纬向型分布,夏、秋2季均为东高西低的经向型分布。风速的减小和日照时数的缩短是河南省参考作物蒸散量减少的主要原因。  相似文献   

10.
【目的】分析晚稻蒸散量日变化、日平均蒸散量、累积蒸散量和典型天气条件下蒸散量的特征, 探讨新型稻田蒸散仪的实际可应性。【方法】采用新型超声波蒸散仪,基于水量平衡法,以双季晚稻为研究对象, 测定 2017—2019 年的晚稻蒸散量。【结果】新型超声波蒸散仪仪数据实采率、有效数据获取率均在 93% 以上, 测定精度可达 0.2 mm,数据稳定性方面可以保证大田观测数据的可用性;分析双季晚稻不同时间尺度的蒸散量 发现,晚稻全生育期内的蒸散量约 466 mm,其中分蘖期的累积蒸散量最大、约 135 mm,拔节 - 抽穗期的平均 蒸散量最大、为 5.4 mm/d,表明晚稻在分蘖期和拔节 - 抽穗期需水量最大;典型天气(雨天除外)晚稻蒸散量 日变化均表现为“Ω”型,以晴天的蒸散曲线峰值最大、为 1.3 mm/h,通过拟合的 R2 和 P 值看,晴天、多云和 阴天蒸散量均呈六阶曲线分布。【结论】开展新型蒸散仪测定田间水稻蒸散量特征值的研究,研讨其适用性, 可以为推广使用低成本、高精度、便捷的新型稻田蒸散量测定仪提供重要参考。  相似文献   

11.
[目的]明确基于MATLAB的BP神经网络预测温室草皮腾发量的可行性。[方法]在9月温室实测气象资料的基础上,对温室内的平均气温、相对湿度、光照强度和草皮日腾发量(ET)进行回归分析,建立了BP网络ET预报模型(BP-ET)。[结果]气温、光照强度与草皮腾发量呈显著正相关(P<0.05),相对湿度与草皮腾发量呈显著负相关(P<0.05)。BP神经网络模型具有极高的拟合精度,9月资料检验预报模型的平均相对误差为5.58%,模拟与检验均有很高的拟合精度。BP网络可以用于草皮日腾发量的预测,是对传统草皮日腾发量计算的补充。[结论]该研究为气象数据缺测条件下温室草皮日腾发量的估算提供了新思路。  相似文献   

12.
新疆潜在蒸散分形特征与R/S趋势分析   总被引:1,自引:0,他引:1  
[目的]分析新疆潜在蒸散的时间序列,判断时间序列的分形结构,对新疆潜在蒸散的变化趋势进行预测.[方法]应用Penman-Monteith模型计算了新疆53个气象台站1955~2008年的潜在蒸散量时间序列,并采用配分函数(统计矩)判定该时间序列的分形结构,再利用重标极差分析法(R/S)对新疆潜在蒸散变化趋势进行预测.[结果]配分函数τ(q)与q的线性关系非常明显,对于高阶q取值为10,20,…,100时也成立,依然有较好的线性关系.三个区域年平均潜在蒸散量时间序列存在明显的Hurst现象,Hurst指数分别为0.896 0、0.719 4、0.788 9.[结论]南疆区、北疆区、天山山区1955~2008年潜在蒸散时间序列是一个单分形结构.新疆潜在蒸散变化存在着持续性.其中,南疆区潜在蒸散的持续性最强,天山山区次之,北疆地区最弱.  相似文献   

13.
【目的】考虑到利用单一植被指数(VI)反演叶面积指数(LAI)时,存在着不同程度的饱和性和易受土壤背景影响的问题,提出通过分段的方式选择敏感植被指数形成最佳VI组合以提高LAI反演的精度。【方法】通过ACRM辐射传输模型模拟数据,结合地面实测光谱数据,选择常用的植被指数进行土壤敏感性分析以及饱和性分析确定LAI的分段点,并在此基础上分段选择最佳植被指数形成组合VI来实现LAI的最终反演,并利Landsat5 TM开展区域条件下冬小麦LAI反演应用。【结果】以LAI=3是较为适宜的分段点,利用植被指数最佳分段组合OSAVI(LAI≤3)+TGDVI(LAI>3)可在一定程度上有效克服土壤影响因素以及饱和性问题,联合反演的结果明确优于单一植被指数反演精度。【结论】通过分段选择最佳植被指数形成联合VI可以有效提高LAI反演精度。  相似文献   

14.
新疆北疆棉花多元复合遥感估产模型研究   总被引:2,自引:1,他引:1  
[目的]揭示棉花产量与棉花叶面积指数( LAI)、归一化植被指数(NDVI)相关关系,辨识新疆北疆棉花遥感估产最佳时相,建立棉花产量与LAI及NDVI间的多元复合遥感估产模型,为大面积棉花生产管理和估产提供理论参考.[方法]以TM影像为数据源,结合实地调查的棉花LAI、NDVI和产量等数据,对影像数据进行校正,最后用统计学方法分析棉花指数与产量数据间关系和建模.[结果]棉花LAI在各生育期呈先升后降的趋势,花铃期最高,均值为3.69;棉花NDVI在各生育期基本处于稳定的较高水平,棉花生长旺盛,长势较好;棉花蕾期和花铃期LAI与产量呈极显著正相关,花铃期相关系数最高,达到0.75;新疆北疆棉花最佳估产时相为花铃期,最优估产模型为Y=17.76 LAI - 123.05 NDVI +232.15.[结论]利用LAI和NDVI建立多元复合估产模型能有效提高棉花的估产精度.  相似文献   

15.
以2010年TM影像为数据源,结合实测叶面积指数(LAI)数据,采用逐步回归方法,分析滁州市森林叶面积指数与植被指数关系并建立估测模型。结果表明:在0.01显著水平下,地面LAI和NDVI、RVI、SAVI的相关性分别为0.899、0.868、0.853;以NDVI为自变量构建的指数函数关系模型与LAI相关系数最高,相关性达0.839,LAI预测精度达78.96%;以NDVI、RVI、SAV为自变量构建的多元线性回归模型与LAI相关性达0.917,LAI估测平均精度达83.36%,符合森林资源监测要求。研究结果为使用遥感数据进行滁州市大面积森林质量监测、森林分布变化提供依据和技术支持。  相似文献   

16.
【目的】验证无人机机载高光谱传感器S185,并基于其获得的影像探讨无人机高光谱遥感反演叶面积指数的新方法。【方法】以东北玉米为研究对象,在吉林省公主岭市开展了玉米氮肥梯度试验,共设5处理,每个处理3次重复。分别在玉米的V5-V6,V11,R1-R2等生育期(Ritchie生育期)进行无人机飞行试验和地面光谱及叶面积指数测定,共获得数据45组。为验证S185影像数据,在相同尺度下提取S185影像信息与地面光谱信息,一方面从测定同一目标地物两者光谱反射率间的相关性进行分析,另一方面筛选15种常用的各类光谱指数,从整个生育期通过影像数据计算的各光谱指值与地面光谱仪计算的相应值变化趋势的一致性进行分析;将45组样品随机选择30组,基于人工神经网络算法利用S185数据建立反演叶面积指数的模型,剩下15组样品作为外部验证样品,用来验证神经网络模型的预测效果。另外,基于相同的分组数据,利用前面筛选的各光谱指数分别建立叶面积指数的反演模型,以与人工神经网络建模结果进行比较。【结果】在各个生育时期,同种目标地物S185测定数据与地面光谱仪测定数据间具有很强的相关性,相关系数在0.99以上;在玉米整个生育期,S185数据计算的各光谱指数与地面光谱仪计算的各光谱指数变化趋势相同,相关系数在0.88以上;在构建基于人工神经网络法反演叶面积指数的模型中,建模时的决定系数为0.96,均方根误差为0.42,相对均方根误差为13.15%;外部验证时的决定系数为0.95,均方根误差为0.54,相对均方根误差为16.74%,这一结果优于基于各光谱指数建立的叶面积指数反演模型。【结论】无人机搭载S185传感器可用于准确获取玉米冠层高光谱信息,且可利用人工神经网络法基于这一数据建立玉米叶面积指数的反演模型。  相似文献   

17.
叶面积指数(LAI)是气候研究和生态研究中重要的植被冠层结构参数,遥感技术为快速获取大面积叶面积指数提供了有效途径。大兴安岭地区是我国重要的生态功能区,本文以大兴安岭为研究区域,根据森林林分特征,采用基于物理过程的4-Scale几何光学模型,利用多角度MISR遥感数据反演该区域叶面积指数数据。几何光学模型特点在于参数具有物理意义,考虑地面反射的热点效应,模型反演过程不依赖于样本数据适用于大区域反演研究,MISR数据提供同一区域多角度遥感数据,有效解决了单一观测角度植被指数和叶面积指数函数关系饱和点低的问题。由于地面验证数据空间尺度无法满足MISR数据的空间分辨率,本文采用TM数据对样地实测叶面积指数数据进行尺度转换,针对不用坡向叶面积指数空间异质性进行分析,讨论不同空间分辨率验证数据的合理性,研究表明大兴安岭区域使用600m空间分辨率验证数据对MISR数据反演结果检验最优,该分辨率下叶面积指数变化随空间尺度变化趋于稳定,并较好地避免了2种遥感数据几何配准带来的误差。结果表明:4-Scale几何光学模型适用于我国大兴安岭地区森林叶面积指数反演,实验中MISR数据反演叶面积指数的平均绝对误差为25.6%、均方根误差为0.622。本研究为大兴安岭地区叶面积指数大区域快速定量反演提供了研究基础。   相似文献   

18.
高光谱数据与水稻农学参数之间的相关分析   总被引:21,自引:0,他引:21       下载免费PDF全文
通过田间小区试验,获取水稻整个生育期内不同氮素处理的叶面积指数(LAI)、叶片叶绿素含量(CHL.C)、叶绿素密度(CHL.D)与高光谱分辨率遥感数据.分析其变化过程,并利用微分技术处理水稻群体反射光谱以减少土壤等低频背景光谱噪音的影响.通过单相关分析和逐步回归方法研究水稻LAI、CHL.C、CHL.D分别与光谱反射率、反射率的一阶微分光谱的相关关系.结果表明,微分技术能够改善光谱数据与LAI、CHL.C的相关性,而与鲜叶CHL.D的相关性较低.  相似文献   

19.
遥感观测的叶面积指数(LAI)时间序列数据广泛应用于作物长势监测,但数据受大气条件等影响,存在数值偏低和时间序列数据缺失等问题。为此,本文设计了一种基于重采样粒子滤波的LAI时间序列重构算法,以LAI为同化变量,在WOFOST模型本地化的基础上,实现了遥感LAI数据和WOFOST模型模拟的LAI数据的同化,以重构LAI时间序列。算法将WOFOST作物模型简化为LAI状态随时间演变的非线性计算方程,作为重采样粒子滤波的状态转移方程;将地面实测LAI数据和遥感LAI数据建立的线性方程,作为重采样粒子滤波的观测方程,建立LAI时间序列数据同化模型。以带权重粒子表示LAI时间序列状态后验分布,并在循环迭代中对粒子重采样,以此实现单点和区域LAI时间序列重构。应用该算法,对河北省冬麦区2010年LAI时间序列进行重构,结果表明,基于重采样粒子滤波的LAI时间序列重构算法在单点和区域上得到的LAI值明显更接近冬小麦实际生长状况,且算法能够弥补遥感LAI时序数据的缺失,为进一步的作物长势监测提供基础支撑。  相似文献   

20.
叶面积指数(Leaf Area Index,LAI)是重要的植被结构参数,调控着植被与大气之间的物质与能量交换,在生态环境脆弱的我国西北部开展植被LAI的研究对阐明该地区植被对气候变化和人类活动的响应特征具有重要的科学意义。利用LAI-2200和TRAC仪器观测了新疆喀纳斯国家级自然保护区森林和草地的有效叶面积指数(LAIe)和真实LAI,构建了其遥感估算模型,生成了研究区LAIe和LAI的空间分布图。在此基础上,分析了LAI随地形因子(海拔、坡度、坡向)的变化特征,探讨了将其应用于估算研究区森林生物量密度的可行性,并评估了研究区MODIS LAI产品的精度。结果表明:研究区阔叶林、针阔混交林、针叶林、草地LAIe的平均值分别为4.40、3.18、2.57、1.76,LAI的平均值分别为4.76、3.93、3.27、2.30。LAIe和LAI的高值主要集中分布在湖泊和河流附近;植被LAI随海拔、坡度和坡向的变化表现出明显的垂直地带性的特点。LAI随海拔和坡度的增加呈现先增加后减小的变化趋势,坡向对针叶林和草地LAI的影响明显,但对阔叶林和针阔混交林LAI的影响较弱;森林生物量密度(BD)随LAI增加而线性增加(BD=44.396LAI-25.946,R2=0.83),研究区森林生物量密度平均值为120.3 t/hm2,估算的总生物量为5.0×106t;MODIS LAI产品与利用TM数据生成的LAI之间具有一定的相似性(森林R2=0.42,草地R2=0.53),但森林和草地的MODIS LAI产品分别比利用TM数据生成的LAI偏低16.5%和24.4%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号