首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 133 毫秒
1.
以炭化炉处理的毛竹纤维化单板为原料,系统地研究了不同热处理温度对纤维化竹单板的表面性能和微力学性能影响。结果显示,随着热处理温度的升高,纤维化竹单板的质量损失率增加,表面颜色加深,p H值和缓冲容量降低。热处理后纤维化竹单板的半纤维素降解,导致其综纤维素和α-纤维素质量分数分别降低了20.15%、35.94%,冷、热水抽提物和木质素相对质量分数分别增加了20.15%、27.39%和43.56%。傅立叶变换红外光谱和X射线光电子能谱分析结果进一步证明了半纤维素发生降解,多糖质量分数降低,木质素相对质量分数增加。微力学性能测试结果显示,热处理后纤维细胞和薄壁细胞的细胞壁弹性模量变化不显著,薄壁细胞的硬度增加了48.84%,使材料的硬度显著增加。  相似文献   

2.
用化学分析法测定油茶籽壳的主要成分,并用不同方法处理油茶籽壳后测定其主要成分,同时利用扫描电镜对处理后油茶籽壳的细胞微观结构进行观察。结果表明,油茶籽壳中水分占11.07%,灰分占1.02%,粗脂肪占2.53%,粗蛋白占2.70%,还原糖占1.59%,茶皂素占10.68%,半纤维素占22.00%,纤维素占17.32%,木质素占31.35%,油茶籽壳的成分处理前、后有所变化;油茶籽壳的细胞壁主要由半纤维素、纤维素、木质素组成,且每部分都呈层状结构,半纤维素分布于细胞壁的内层,纤维素分布于细胞壁的中层,木质素分布于纤维素和半纤维素的层状结构之间和细胞壁的外层。  相似文献   

3.
通过纳米压痕测试技术,测定和分析了未处理材和经硅溶胶强化处理的复合木材细胞壁层面的力学性能和弹塑性,以及硅溶胶的存在位置对强化复合木材细胞壁微观力学性能的影响。结果表明:1)浸渍强化处理工艺可以使硅溶胶进入木材细胞壁,使得强化复合木材细胞壁的弹性模量和硬度达到18.64 和0.64 GPa,分别比未处理材提高59%和31%;2)控制改性处理工艺,可以得到改性细胞壁和既有改性细胞壁又有填充细胞腔2种改性形式的强化复合木材,并且2种改性形式下细胞壁层面上的弹性模量和硬度没有显著差异,证实了细胞腔填充对细胞壁层面的力学性能没有影响;3)复合木材细胞壁形貌表征和力学测试曲线表明,硅溶胶强化处理后的复合木材细胞壁保持了较好的弹塑性特性,相对弹性回复率与未处理材基本相同。   相似文献   

4.
褐腐杨木微观结构、力学性能与化学成分的关系研究   总被引:2,自引:2,他引:0  
为了探究褐腐对阔叶材主要材性的影响规律,对杨木边材试件进行室内褐腐培养,为期12周,每周抽样分别测试健康和腐朽木材的微观结构、力学性能及化学成分,并分析其随褐腐程度的变化情况,研究力学性能和化学成分之间的关系。结果表明:随褐腐程度的加深,木材细胞腔内的菌丝越来越多,纹孔膜和纹孔边缘的细胞壁分别于质量损失率为10%、16%时出现开裂;质量损失率为24%时,细胞壁严重溃烂。褐腐培养时间和质量损失率都对力学性能影响极显著;冲击韧性和抗弯强度的损失率随褐腐程度呈对数函数变化趋势,抗弯弹性模量和顺纹抗压强度的损失率呈线性变化趋势。各力学指标对褐腐的响应速度以及受褐腐影响的程度均呈如下规律:冲击韧性抗弯强度抗弯弹性模量顺纹抗压强度。不同褐腐程度试样中的综纤维素、半纤维素以及抽出物含量差异极显著,纤维素和木质素差异不显著。腐朽过程中褐腐菌最先主要降解半纤维素,质量损失率为20%左右时,转为以分解纤维素为主。冲击韧性的快速显著降低与半纤维素的降解有关,抗弯强度的变化与综纤维素含量有关,抗弯弹性模量和顺纹抗压强度的线性降低是由纤维素的缓慢降解决定的。总之,在褐腐过程中,木材微观水平上化学成分的降解和细胞壁结构的破坏从根本上导致了宏观力学性能的降低。   相似文献   

5.
氨化与微贮稻草显微组织结构的比较   总被引:7,自引:1,他引:6  
干稻草分别通过氨化和微贮处理后,进行经组织切片观察。结果表明,在氨碱的作用下,纤维素木质素表面之间的结合被破坏,并使部分木质素、矿质、栓质溶解,纤维素和半纤维素表面保护层结构变化,胞壁膨胀,纤维软化。稻草经微贮自理后,纤维素、半纤维素-木聚糖链的木质素聚合物的酯键被酶解,增加了柔软性和膨胀度,表现为胞壁衬质物亲水强,富有可逆性,结构上的复性呈常态。相比之下,干稻草细胞壁中的纤维素、半纤维素和木质素  相似文献   

6.
竹材的昆虫检疫处理对提高竹材及竹制品的品质十分重要。本文采用60Co-γ射线对青皮竹进行检疫处理,在考察了各辐射剂量的抑虫效果后,研究辐射剂量对青皮竹主要化学成分和力学性能的影响,分析青皮竹化学成分与力学性能之间的相关性。结果表明:辐射剂量越大,抑虫效果越好。在辐射剂量为50、60 Gy时,纤维素质量分数和结晶度均增加,半纤维素质量分数降低,木质素质量分数有小幅增加。当辐射剂量达到80 Gy时,纤维素质量分数和结晶度均下降明显,半纤维素质量分数增加明显,木质素质量分数继续增加。50 Gy剂量下,青皮竹的抗弯强度、抗弯弹性模量没有显著变化,抗剪强度、抗拉强度有少许增加;在60 Gy的剂量下,力学强度增加明显,其中抗弯强度增加10.7%,抗弯弹性模量增加5.3%,抗剪强度增加16.5%,抗拉强度基本不变;当辐射剂量增加到80 Gy时,材料的力学性能大幅下降,抗弯强度、抗弯弹性模量、抗剪强度、抗拉强度分别下降了46.5%、37.6%、19.5%、33.9%。化学成分与力学性能相关性分析表明:在本文的研究条件下,纤维素质量分数、结晶度与青皮竹的抗弯强度、抗弯弹性模量、抗剪强度、抗拉强度呈正相关,其中受影响最大的是抗剪强度;木质素、半纤维素质量分数与竹材力学强度呈负相关,半纤维素质量分数比木质素质量分数对这些力学强度影响更大。   相似文献   

7.
木质纤维细胞壁主要是由纤维素、半纤维素以及具网络结构的木质素交联形成的高度有序的三维立体结构,是植物最基本的力学承载单元。本文首先概述了国内外有关木质纤维细胞壁中纤维素、半纤维素和木质素3种结构大分子的模量、强度等微力学特性,其次就纤维素?半纤维素、纤维素?木质素以及半纤维素?木质素大分子间的交联结构、分子间的有序组装规律进行了总结。在此基础上,对比分析了光学显微成像、电子显微成像、原子力显微成像、显微红外光谱、线偏振显微拉曼光谱、和频振动光谱以及同步辐射X射线衍/射技术在细胞壁大分子取向研究过程中的异同点。重点讨论通过分子光谱化学成像技术揭示的木质纤维原料不同类型细胞以及同一类型细胞不同亚层中3种结构大分子取向排列规律。最后,展望了木质纤维原料大分子取向研究可能的发展趋势:系统表征木质纤维细胞壁纤维素超分子结构、三大组分间连接键类型、纤维素构象对半纤维素糖苷键及木质素芳香环有序组装的影响机制;在纳米尺度揭示木质纤维发育过程中,各类细胞壁中纤维素纤丝聚集体结构、取向和微力学变化规律;在细胞壁水平非破坏性地对木质纤维大分子取向进行三维立体成像和定量研究;基于分子结构表征、分子模拟和三维成像研究结果实现针叶、阔叶及禾本科植物纤维细胞壁骨架模型的构建。   相似文献   

8.
针叶材管胞细胞壁不同壁层的纵向弹性模量和硬度   总被引:6,自引:3,他引:3  
该文利用原位成像纳米压痕技术研究了针叶材管胞细胞壁不同壁层之间在纵向弹性模量 (MOE) 和硬度方面的差异.结果表明,当压针从细胞壁的纵向压入时,细胞壁变形机制以塑性变形为主;细胞壁纵向弹性模量和硬度在细胞壁厚方向的分布不均匀.S3层与细胞腔交界处、S1层与复合胞间层(CML)交界处的弹性模量和硬度均明显小于次生壁(SW)S2层.此外,相邻管胞次生壁S2层之间的弹性模量和硬度也存在一定差异.ANOVA分析表明,杉木管胞、马尾松管胞次生壁的弹性模量均显著大于复合胞间层,但两者之间的硬度差异不显著.虽然马尾松成熟材管胞次生壁的纵向弹性模量和硬度均大于幼龄材,但差异的程度不同.弹性模量前者比后者约大40%,但硬度只大13%.管胞次生壁和复合胞间层的弹性模量和硬度之间均存在较显著的正线性相关关系.   相似文献   

9.
【目的】 研究稀硫酸预处理下,酸浓度、固液比、处理时间及温度对杂交狼尾草木质纤维素降解效率的影响,分析稀硫酸对木质纤维素降解的作用机理,并筛选最佳预处理工艺。【方法】 以杂交狼尾草为研究对象,以H2SO4浓度(0.5%、1.0%、1.5%、2.0%、2.5%)、固液比(1﹕6、1﹕8、1﹕10、1﹕12、1﹕14)、时间(15、30、45、60、90 min)和温度(80、100、110、120、125℃)4个单因素进行试验,每个因素取5个水平,3次重复,分析单因素对固体分解率、纤维素降解率、半纤维素降解率、木质素脱除率及水解糖的影响。在单因素试验基础上,采用4因素2水平的L8(24)正交试验确定主要影响因素,并对最佳工艺条件预处理下的杂交狼尾草进行SEM分析和XRD分析。【结果】 单因素试验结果表明,各因素下半纤维素降解率均高于木质素降解率。其中,硫酸浓度的增加使纤维素和半纤维素的降解率增加,木质素脱除率降低;由纤维素水解产生的葡萄糖产量也随着浓度的增加而增加,但木糖含量逐渐降低;低浓度的硫酸(0.5%—1.5%)促进杂交狼尾草固体物质降解消化,继续增加硫酸浓度(>1.5%)杂交狼尾草的固体降解无显著变化。固液比对各指标的影响差异较小,固液比增加至1﹕10时,固体分解率、半纤维素和木质素脱除均达到最大。预处理时间的长短对固体分解率、半纤维素和木质素的降解影响不明显,但促进半纤维素降解和葡萄糖生成。温度对固体分解率、纤维素、半纤维素和木质素的降解及水解糖产量的影响效果明显,100℃是重要的临界温度,有效降解木质纤维素需要温度达100℃以上。正交试验结果表明,影响半纤维素降解的因素依次为:温度-浓度-时间-固液比。稀硫酸预处理后杂交狼尾草木质纤维素结构塌陷,非纤维物质被显著脱除,纤维束裸露(SEM);纤维素结晶聚合度增加(XRD)。【结论】 稀硫酸预处理杂交狼尾草主要降解半纤维素,对木质素的降解效果较差。温度是最主要的影响因素,其次为酸浓度。4 因素影响下的最佳工艺条件为:浓度1.5%,固液比1﹕6,时间15 min,温度120℃。  相似文献   

10.
玉米秸秆中木质素、半纤维素和纤维素的组分分离研究   总被引:1,自引:0,他引:1  
针对分离植物茎秆中的木质素、半纤维素和纤维素需高温和高压处理的苛刻条件以及所得组分纯度和回收率均较低的缺陷,采用乙醇和硝酸相结合的方法对玉米秸秆在常压下进行预处理,经稀碱溶液蒸煮及过氧化氢处理,实现高效分离和回收木质素、半纤维素和纤维素组分的目的。正交试验确定的最佳条件为:固液比1∶14、硝酸与乙醇体积比1∶2、76℃下反应3 h,原料的木质素脱除率达76.3%,木质素回收率为44.5%;预处理后的原料以4%Na OH为溶剂、固液比1∶40、95℃下蒸煮2.5 h,其半纤维素脱除率98.8%,半纤维素回收率达66.0%(滤液∶乙醇1∶0.8、p H 7、沉淀2 h);粗纤维素以2.5%H2O2为溶剂、固液比1∶30、p H 11.5、(46±1)℃下处理6 h,其纤维素纯度99.28%,回收率59.7%。该方法具有工艺条件温和及绿色环保等优势,为玉米秸秆的分级利用提供了一条新的途径。  相似文献   

11.
木质素含量对木材单根纤维拉伸性能的影响   总被引:1,自引:0,他引:1  
以杉木木材单根纤维为研究对象,采用3种化学方法不同程度地脱除木质素,在细胞水平上,探讨木质素对木材单根纤维拉伸力学性能的影响。结果表明:在干燥状态下,单根纤维的弹性模量随着木质素含量的减少而降低,但整体降低的程度不大,木质素几乎完全脱除时,单根纤维的弹性模量降低约7%;木质素对单根纤维的拉伸强度和断裂伸长率影响显著,都...  相似文献   

12.
  目的  为了探究热改性温度和压力条件对欧洲赤松(Pinus sylvestris)化学成分变化及耐腐性的影响规律,进而揭示热改性工艺、化学成分变化和木材耐腐性之间的响应机制。  方法  在不同温度(150、180、210 ℃)、加压或常压条件下对欧洲赤松边材进行热改性,分析热改性前后抽提物、木质素、综纤维素、α-纤维素和半纤维素质量分数的变化。以密黏褶菌为试验菌种,研究热改性木材在腐朽过程中化学成分的变化,并采用场发射扫描电子显微镜(FE-SEM)对其微观形貌进行表征。  结果  热改性温度越高,欧洲赤松质量损失率越高;热改性过程中抽提物和木质素质量分数上升,综纤维素、α-纤维素和半纤维素质量分数降低;在同一温度下,加压条件比常压条件下热改性质量损失率和化学成分变化更为显著。与常压热改性相比,加压热改性材耐腐性较好,且温度越高,耐腐性越强。加压180 ℃腐朽12周后质量损失率为18.8%,耐腐等级为Ⅱ级(耐腐);加压210 ℃腐朽12周后质量损失率为8.4%,耐腐等级为Ⅰ级(强耐腐)。腐朽过程中,耐腐性能无明显变化的常压150 ℃、加压150 ℃和常压180 ℃热改性材与对照组的化学成分变化趋势相似,随着腐朽时间的延长,综纤维素、α-纤维素和半纤维素质量分数持续下降,木质素质量分数持续上升。常压210 ℃、加压180 ℃和加压210 ℃热改性材的木质素质量分数变化不明显,综纤维素和α-纤维素的降解速度明显变慢。  结论  热改性过程中不同的温度和压力对木材的化学成分变化和耐腐性产生不同程度的影响。温度较高且加压的热改性条件会增加热改性过程中半纤维素和α-纤维素的降解,综纤维素质量分数大幅下降,抽提物、木质素质量分数大幅上升。热改性后综纤维素的减少使得褐腐真菌对木材的降解程度降低,降解速度变慢,木质素、抽提物质量分数的上升又对真菌进一步降解细胞壁成分具有一定的抑制作用,从而提升热改性材的耐腐性。   相似文献   

13.
为探明水分对木材细胞壁力学性能的影响,选取樟子松为对象,利用热水、1%氢氧化钠以及苯-乙醇溶液在80 ℃、6 h、固液比1:20的工艺条件下对试样进行抽提处理,抽提后的木材样品加工成金字塔形,然后对试样进行吸湿处理并且调控试样含水率,借助纳米压痕测试研究含水率对木材细胞壁力学性能的影响,并建立机理模型做进一步分析。结果表明,随着含水率的增加,木材的纵向弹性模量与硬度,均出现了一定程度的下降。分析发现,水分子进入细胞壁后与游离羟基形成氢键,随着含水率增加,会被部分原有的氢键破坏,并与之前进入的水分子形成氢键,在内部形成水分子簇,增大了细胞壁分子链之间的距离,使空隙增多,进而降低木材的弹性模量,且水分会使木材细胞壁主成分逐渐软化,硬度降低。  相似文献   

14.
选用密粘褶菌(Gloeophyllum trabeum(Pers.)Murrill)对杉木(Cunninghamia lanceolata(Lamb.)Hook.)木材进行生物性降解,研究不同降解时间对杉木木材化学成分、结晶度、微力学性能和微观形态的影响。结果表明,密粘褶菌不降解杉木木材的木质素,其中边材综纤维素、纤维素和半纤维含量在6周分别降低了6.91%、4.07%和13.34%;心材综纤维素、纤维素和半纤维含量在6周分别降低了6.84%、4.09%和12.97%。木腐菌处理后,杉木木材纤维素结晶度均有所降低;杉木的抗弯强度和抗弯弹性模量均呈现减小的趋势,18周时降到最低,杉木边材抗弯强度减少了46.17%,抗弯弹性模量减小了29.66%,心材抗弯强度减少了53.74%,抗弯弹性模量减少了47.74%。  相似文献   

15.
针对硫酸盐木质素极性高、与HDPE复合难的问题,本研究使用顺丁烯二酸酐(MA)、丁二酸酐(SA)、邻苯二甲酸酐(PA)改性硫酸盐木质素(KL),并采用注塑法制备KL/高密度聚乙烯(HDPE)复合材料。通过相容性分析模拟了改性KL-HDPE复合材料的相容性,分析复合材料的吸水性和吸水厚度膨胀率,通过三点弯曲表征了复合材料的弹性模量(MOE)和断裂模量(MOR)。结果表明,改性后复合材料的界面相容性提高,与PA改性的KL相比,MA、SA改性的KL与HDPE具有较好的界面相容性。MA、SA改性后的木素-HDPE复合材料吸水速率降低,吸湿尺寸稳定性提高。PA改性的木素-HDPE复合材料吸水速率在前500 h较高,但在500 h以上,随着时间的延长其吸水速率低于未改性木素-HDPE复合材料。其中,MA-PE改性复合材料具有较好的耐水性和吸湿尺寸稳定性。MA、SA、PA改性的木素-HDPE复合材料MOE明显提高,分别提高了71%、42%、17%。MA,SA和PA改性除去了木质素中的大部分羟基,降低木质素的亲水性。改性后的复合材料MOR增加,其中MA改性KL复合材料的MOR增加最显著。  相似文献   

16.
为研究熏蒸处理对木材颜色和力学性能的影响,采用氧硫化碳(COS)、溴甲烷(MB)和硫酰氟(SF)分别在3种不同质量浓度下对落叶松材进行熏蒸处理,用色差分析、力学性能测试、电子扫描电镜(SEM)、能谱分析(EDS)和红外光谱分析(FTIR)对熏蒸前后木材的物理力学性能和官能团变化进行表征。结果发现:1)使用3种熏蒸剂处理后,落叶松材的颜色均发生明显变化,其中COS熏蒸处理对试样的明度(L*)、红绿轴色度指数(a*)的影响最小;2)落叶松材经过COS熏蒸处理后,顺纹抗压强度、静曲强度、弹性模量均下降,其中顺纹抗压强度下降最明显,在熏蒸剂质量浓度为124.2 g/m3时,顺纹抗压强度下降幅度达13.09%,而静曲强度和弹性模量分别下降9.38%、8.66%;经MB、SF熏蒸处理后,试样的顺纹抗压强度、静曲强度、弹性模量均无明显变化;3)熏蒸后的落叶松材表面微观结构未发生明显变化,但COS熏蒸后木材表面的S元素和SF熏蒸后木材表面的F元素分布密度均有所增加;4)在落叶松红外光谱图中,经MB、SF熏蒸后,碳氧双键和碳氢键明显增多;COS熏蒸后,半纤维素上的碳氧双键伸缩振动减弱,芳香环骨架上的碳氧双键的伸缩振动加强,木质素相对含量增加。   相似文献   

17.
以3份生育期一致、果皮柔嫩度存在梯度差异的超甜玉米(Zea mays L.)自交系为材料,探讨果皮细胞壁主要成分含量在子粒发育过程中的动态变化规律。结果表明,在湖北武汉(2014年春)和海南陵水(2014年冬),PE10(果皮柔嫩性好)、T105(果皮柔嫩性中)、S33205(果皮柔嫩性差)在授粉后第12~24天果皮半纤维素含量均呈逐渐增加的特点,木质素含量则呈单峰曲线变化,而纤维素含量始终在24%上下波动,果胶与灰分含量变化不大且没有明显的规律。在两种环境条件下,3份自交系除PE10在授粉后第12、14天外,其余各测试时间点的果皮主要成分含量均值由大到小的顺序始终为半纤维素、纤维素、木质素;授粉后第12天果皮的半纤维素含量均值由大到小的顺序均为S33205、T105、PE10,而PE10半纤维素平均累积速率大于T105和S33205;授粉后第12天至最大值时间段内的果皮木质素含量均值由大到小的顺序均为S33205、T105、PE10。环境改变影响半纤维素、木质素累积速率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号