首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Caenorhabditis elegans, an effective RNA interference (RNAi) response requires the production of secondary short interfering RNAs (siRNAs) by RNA-directed RNA polymerases (RdRPs). We cloned secondary siRNAs from transgenic C. elegans lines expressing a single 22-nucleotide primary siRNA. Several secondary siRNAs start a few nucleotides downstream of the primary siRNA, indicating that non-RISC (RNA-induced silencing complex)-cleaved mRNAs are substrates for secondary siRNA production. In lines expressing primary siRNAs with single-nucleotide mismatches, secondary siRNAs do not carry the mismatch but contain the nucleotide complementary to the mRNA. We infer that RdRPs perform unprimed RNA synthesis. Secondary siRNAs are only of antisense polarity, carry 5' di- or triphosphates, and are only in the minority associated with RDE-1, the RNAi-specific Argonaute protein. Therefore, secondary siRNAs represent a distinct class of small RNAs. Their biogenesis depends on RdRPs, and we propose that each secondary siRNA is an individual RdRP product.  相似文献   

2.
3.
4.
Small interfering RNAs (siRNAs) direct RNA interference (RNAi) in eukaryotes. In flies, somatic cells produce siRNAs from exogenous double-stranded RNA (dsRNA) as a defense against viral infection. We identified endogenous siRNAs (endo-siRNAs), 21 nucleotides in length, that correspond to transposons and heterochromatic sequences in the somatic cells of Drosophila melanogaster. We also detected endo-siRNAs complementary to messenger RNAs (mRNAs); these siRNAs disproportionately mapped to the complementary regions of overlapping mRNAs predicted to form double-stranded RNA in vivo. Normal accumulation of somatic endo-siRNAs requires the siRNA-generating ribonuclease Dicer-2 and the RNAi effector protein Argonaute2 (Ago2). We propose that endo-siRNAs generated by the fly RNAi pathway silence selfish genetic elements in the soma, much as Piwi-interacting RNAs do in the germ line.  相似文献   

5.
A microRNA in a multiple-turnover RNAi enzyme complex   总被引:2,自引:0,他引:2  
In animals, the double-stranded RNA-specific endonuclease Dicer produces two classes of functionally distinct, tiny RNAs: microRNAs (miRNAs) and small interfering RNAs (siRNAs). miRNAs regulate mRNA translation, whereas siRNAs direct RNA destruction via the RNA interference (RNAi) pathway. Here we show that, in human cell extracts, the miRNA let-7 naturally enters the RNAi pathway, which suggests that only the degree of complementarity between a miRNA and its RNA target determines its function. Human let-7 is a component of a previously identified, miRNA-containing ribonucleoprotein particle, which we show is an RNAi enzyme complex. Each let-7-containing complex directs multiple rounds of RNA cleavage, which explains the remarkable efficiency of the RNAi pathway in human cells.  相似文献   

6.
Argonaute2 is the catalytic engine of mammalian RNAi   总被引:4,自引:0,他引:4  
Gene silencing through RNA interference (RNAi) is carried out by RISC, the RNA-induced silencing complex. RISC contains two signature components, small interfering RNAs (siRNAs) and Argonaute family proteins. Here, we show that the multiple Argonaute proteins present in mammals are both biologically and biochemically distinct, with a single mammalian family member, Argonaute2, being responsible for messenger RNA cleavage activity. This protein is essential for mouse development, and cells lacking Argonaute2 are unable to mount an experimental response to siRNAs. Mutations within a cryptic ribonuclease H domain within Argonaute2, as identified by comparison with the structure of an archeal Argonaute protein, inactivate RISC. Thus, our evidence supports a model in which Argonaute contributes "Slicer" activity to RISC, providing the catalytic engine for RNAi.  相似文献   

7.
8.
9.
10.
RNA干涉(RNA interference,RNA1)是由双链RNA导入而引起的转录后基因沉默,它可以作为一种有力的工具在多种有机体中抑制特异性基因的表达。文章简要介绍了RNA干涉的发现史、作用机制、特点及该项技术的用途。RNA1的作用机制可以分为起始阶段和效应阶段。双链RNA被Dicer消化成siRNAs(small interfermg RNAs),进一步形成RNA诱导沉默复合物(RNA-mduced silencmg complex,or RISC),在siRNAs的引导下切割靶mRNA。RNAi技术在疾病的基因治疗、功能基因组学及细胞信号通路分析等力面具有广阔的应用前景。  相似文献   

11.
12.
RNA interference (RNAi) spreads systemically in plants and nematodes to silence gene expression distant from the site of initiation. We previously identified a gene, sid-1, essential for systemic but not cell-autonomous RNAi in Caenorhabditis elegans. Here, we demonstrate that SID-1 is a multispan transmembrane protein that sensitizes Drosophila cells to soaking RNAi with a potency that is dependent on double-stranded RNA (dsRNA) length. Further analyses revealed that SID-1 enables passive cellular uptake of dsRNA. These data indicate that systemic RNAi in C. elegans involves SID-1-mediated intercellular transport of dsRNA.  相似文献   

13.
RNA interference (RNAi) of target genes is triggered by double-stranded RNAs (dsRNAs) processed by conserved nucleases and accessory factors. To identify the genetic components required for RNAi, we performed a genome-wide screen using an engineered RNAi sensor strain of Caenorhabditis elegans. The RNAi screen identified 90 genes. These included Piwi/PAZ proteins, DEAH helicases, RNA binding/processing factors, chromatin-associated factors, DNA recombination proteins, nuclear import/export factors, and 11 known components of the RNAi machinery. We demonstrate that some of these genes are also required for germline and somatic transgene silencing. Moreover, the physical interactions among these potential RNAi factors suggest links to other RNA-dependent gene regulatory pathways.  相似文献   

14.
[目的]筛选血管内皮生长因子受体(VEGRF)基因特异性小干扰RNA(Small Interference RNA,siRNA),为肿瘤等疾病的基因治疗寻找一种新途径。[方法]以高表达VEGFR1的人脐静脉血管内皮细胞(HUVEC)为模型,采用RNA干扰技术,化学合成了3条针对血管内皮生长因子受体1(VEGFR1)的特异性siRNA,用Lipofectamine2000TM转染HUVEC细胞株,通过Real time RT-PCR技术检测HUVEC细胞VEGFR1基因mRNA的表达。并对效果最好的VEGFR1 siRNA-2进行siRNA的浓度梯度效果检测。[结果]结果表明,与对照组相比,所设计的3条siRNA均能不同程度地抑制VEGFR1 mRNA的表达,其中siRNA-2号最有效,浓度为50 nmol/L时抑制率达到95%左右。在浓度梯度试验中,VEGFR1 siRNA-2转染浓度为50 pmol/L时,对VEGFR1基因的沉默效果还能达到50%左右。[结论]所设计的siRNA能有效抑制VEGFR1基因的表达,为RNAi用于靶向VEGFR1的基因治疗提供了非常有效的siRNA序列。  相似文献   

15.
To act as guides in the RNA interference (RNAi) pathway, small interfering RNAs (siRNAs) must be unwound into their component strands, then assembled with proteins to form the RNA-induced silencing complex (RISC), which catalyzes target messenger RNA cleavage. Thermodynamic differences in the base-pairing stabilities of the 5' ends of the two approximately 21-nucleotide siRNA strands determine which siRNA strand is assembled into the RISC. We show that in Drosophila, the orientation of the Dicer-2/R2D2 protein heterodimer on the siRNA duplex determines which siRNA strand associates with the core RISC protein Argonaute 2. R2D2 binds the siRNA end with the greatest double-stranded character, thereby orienting the heterodimer on the siRNA duplex. Strong R2D2 binding requires a 5'-phosphate on the siRNA strand that is excluded from the RISC. Thus, R2D2 is both a protein sensor for siRNA thermodynamic asymmetry and a licensing factor for entry of authentic siRNAs into the RNAi pathway.  相似文献   

16.
[目的]筛选血管内皮生长因子受体(VEGRF)基因特异性小干扰RNA(Small Interference RNA,siRNA),为肿瘤等疾病的基因治疗寻找一种新途径。[方法]以高表达VEGFR1的人脐静脉血管内皮细胞(HUVEC)为模型,采用RNA干扰技术,化学合成了3条针对血管内皮生长因子受体1(VEGFR1)的特异性siRNA,用Lipofectamine2000TM转染HUVEC细胞株,通过Real time RT-PCR技术检测HUVEC细胞VEGFR1基因mRNA的表达。并对效果最好的VEGFR1 siRNA-2进行siRNA的浓度梯度效果检测。[结果]结果表明,与对照组相比,所设计的3条siRNA均能不同程度地抑制VEGFR1 mRNA的表达,其中siRNA-2号最有效,浓度为50 nmol/L时抑制率达到95%左右。在浓度梯度试验中,VEGFR1 siRNA-2转染浓度为50 pmol/L时,对VEGFR1基因的沉默效果还能达到50%左右。[结论]所设计的siRNA能有效抑制VEGFR1基因的表达,为RNAi用于靶向VEGFR1的基因治疗提供了非常有效的siRNA序列。  相似文献   

17.
Elucidation of the small RNA component of the transcriptome   总被引:3,自引:0,他引:3  
Small RNAs play important regulatory roles in most eukaryotes, but only a small proportion of these molecules have been identified. We sequenced more than two million small RNAs from seedlings and the inflorescence of the model plant Arabidopsis thaliana. Known and new microRNAs (miRNAs) were among the most abundant of the nonredundant set of more than 75,000 sequences, whereas more than half represented lower abundance small interfering RNAs (siRNAs) that match repetitive sequences, intergenic regions, and genes. Individual or clusters of highly regulated small RNAs were readily observed. Targets of antisense RNA or miRNA did not appear to be preferentially associated with siRNAs. Many genomic regions previously considered featureless were found to be sites of numerous small RNAs.  相似文献   

18.
Rice stripe virus(RSV) often causes severe rice yield loss in temperate regions of East Asia. Although the correlation of small interfering RNAs(si RNAs) with transgenic virus resistance of plants using RNA interference(RNAi) is known for decades, no systematical research has been done on the profiling of si RNAs from a genomic scale. Our research is aiming to systematically study the RNAi impact in RSV-resistant transgenic rice, which was generated by introducing an inverted repeat construct that targets RSV nucleocapsid protein(NCP) gene. In this paper, three independent RSV-retsistant transgenic rice lines were generated, their stable integration of the T-DNA fragment and the expression of si RNAs were confirmed by Southern blotting and Northern blotting analyses, and the majority of si RNAs were in lengths of 21, 22, and 24 nucleotides(nt), which have validated a connection between the presence of the RSV NCP homologous si RNAs and the RSV resistance in those transgenic rice lines. In one of these transgenic lines(T4-B1), the T-DNA fragment was found to have been inserted at chromosome 1 of the rice genome, substituting the rice genome fragment from 32 158 773 to 32 158 787 nt. Bioinformatics analysis of small RNA-Seq data on the T4-B1 line also confirmed the large population of NCP-derived si RNAs in transgenic plants, and the RSV-infected library(T4-B1-V) possessed more si RNAs than its mock inoculated libraries(T4-B1-VF), these results indicating the inverted repeat construct and RSV could introduce abundance of si RNAs in transgenic rice. Moreover, a varied expression level of specific si RNAs was found among different segments of the NCP gene template, about 47% of NCP-derived si RNAs reads aligned with the fragment from 594 to 832 nt(239 nt in length) in NCP gene(969 nt in length) in the T4-B1-V, indicating a potential usage of hotspot regions for RNAi silencing in future research. In conclusion, as the first study to address the si RNA profile in RSV-resistant transgenic plant using next generation sequencing(NGS) technique, we confirmed that the massive abundance of si RNA derived from the inverted repeat of NCP is the major reason for RSV-resistance.  相似文献   

19.
RNA干扰用siRNA的体外转录合成   总被引:4,自引:0,他引:4  
RNA干扰(RNA interference,RNAi)作为一种特异性沉默基因表达的方法,正在成为研究基因功能、胚胎发育及病毒性疾病治疗的重要工具,而获得符合干扰要求的短双链干扰RNA(small interference RNA,siRNA)是进行RNA;研究的首要步骤。本研究建立了体外转录合成siRNA方法。并用其生成的siRNA干扰鸡成纤维细胞外源绿荧光蛋白(GFP)基因和内源3—磷酸甘油醛脱氢酶(GAPDH)基因的表达。结果显示,siRNA能特异性降低鸡成纤维细胞中内外源基因的表达。本实验认为这种以DNA为模板体外转录合成siRNA方法操作简单、成本低、产物得率高,值得从事RNA研究者参考借鉴。  相似文献   

20.
Increasingly complex networks of small RNAs act through RNA-interference (RNAi) pathways to regulate gene expression, to mediate antiviral responses, to organize chromosomal domains, and to restrain the spread of selfish genetic elements. Historically, RNAi has been defined as a response to double-stranded RNA. However, some small RNA species may not arise from double-stranded RNA precursors. Yet, like microRNAs and small interfering RNAs, such species guide Argonaute proteins to silencing targets through complementary base-pairing. Silencing can be achieved by corecruitment of accessory factors or through the activity of Argonaute itself, which often has endonucleolytic activity. As a specific and adaptive regulatory system, RNAi is used throughout eukarya, which indicates a long evolutionary history. A likely function of RNAi throughout that history is to protect the genome from both pathogenic and parasitic invaders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号