首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了实现基于漏磁内检测的管道环焊缝缺陷的有效识别与判定,对环焊缝异常信号的特征及其影响因素进行了分析。通过漏磁信号有限元仿真分析与内检测牵拉试验,系统分析了管道磁化水平、传感器提离值、环焊缝余高,环焊缝缺陷形状、位置及开口方位等因素对缺陷漏磁场的影响,明确了环焊缝缺陷与漏磁信号特征之间的对应关系,提出了基于漏磁内检测信号的环焊缝缺陷分类方法。将环焊缝缺陷分成了4类,并给出了环焊缝缺陷的漏磁内检测检出率和识别准确率。现场开挖验证结果进一步验证了识别与分类判定结果的准确性,为基于漏磁内检测的环焊缝缺陷识别与判定技术工业化应用奠定了基础。  相似文献   

2.
针对管道内检测缺陷点的定位问题,提出了一种基于漏磁原理的管道环焊缝识别方法。在使用内检测结果对缺陷点进行修复时,需要准确定位管道缺陷点位置。内检测器通过搭载里程计来记录检测器前进里程,从而定位管道缺陷点位置。但是检测器在管道中的旋转前进方式及里程计的累积误差,导致检测器记录的里程与实际的管道里程存在较大偏差,且该偏差随检测里程增加而增大。为了准确定位管道缺陷及特征点,通过在检测器上加装焊缝检测器,在内检测数据处理中识别出管道环焊缝,从而借助通过环焊缝里程对缺陷点进行精确定位。牵拉试验证明:该环焊缝识别方法识别率超过95.24%。  相似文献   

3.
介绍了在役管道三轴高清漏磁内检测技术的基本原理,比较了它与传统漏磁内检测技术的异同点,分析了该检测器所检出缺陷的信号特征、检测器的应用特点等.结合实际检测案例,通过分析检测发现的金属损失、金属增加、环焊缝缺陷及螺旋焊缝缺陷等缺陷和信号特征,探讨了该技术的实用性和先进性.  相似文献   

4.
环焊缝缺陷是影响在役长输油气管道安全运行的重要因素,但环焊缝处漏磁内检测信号相对复杂,利用传统的人工分析方法不易实现缺陷的分类。在此,提出一种基于深度卷积神经网络(Deep Convolutional Neural Network,DCNN)的管道漏磁内检测环焊缝缺陷智能分类方法:将管道环焊缝漏磁内检测信号图像作为样本,并以环焊缝开挖后射线检测发现的缺陷类型为样本标签建立数据库,再利用深度卷积对抗生成网络(Deep Convolution Generative Adversarial Network,DCGAN)对数据集进行扩展增强;利用扩展增强后的数据集对残差网络进行改进与迭代训练,再使用训练后的残差网络对环焊缝漏磁内检测信号图像进行分类。实例应用结果表明:该方法可实现对环焊缝常见条形缺陷、圆形缺陷的识别分类,分类测试的准确率为83%~88%,对于圆形缺陷的召回率超过97%。新方法突破了人工分析环焊缝处漏磁内检测信号的局限,可为环焊缝缺陷智能分类提供参考。(图5,表6,参31)  相似文献   

5.
三轴漏磁内检测信号分析与应用   总被引:1,自引:1,他引:0  
介绍了三轴漏磁内检测技术的原理。金属损失产生的漏磁场是空间三维矢量场,三轴漏磁内检测器在轴向、径向和周向上分别使用单独的霍尔传感器来记录漏磁信号。分析了三轴漏磁信号的特征:轴向漏磁信号可以估算缺陷宽度,但结果极不可靠,对缺陷长度和缺陷深度的指示精度不高;径向漏磁信号可以清晰界定缺陷长度,结合轴向漏磁信号基本能够确定缺陷深度,但难以准确判定缺陷宽度;周向漏磁信号能够较精确地判定缺陷的宽度和长度,结合轴向和径向漏磁信号,亦可提高缺陷深度的判定精度和准确性。对三轴漏磁内检测技术的研究和现场应用表明:三轴漏磁内检测器能够检出各类常规金属损失缺陷和传统漏磁检测器难以检测出的非常规缺陷,如狭长轴向缺陷、环焊缝缺陷、螺旋焊缝缺陷以及凹陷等。与传统漏磁检测器相比,三轴漏磁内检测器显著提高了金属损失缺陷尺寸的判定精度。  相似文献   

6.
针对长输油气管道轴向金属损失缺陷检测的问题,研制了一种适用于管径711 mm的横向励磁漏磁内检测器。横向励磁漏磁检测器由驱动节与记录节连接而成,其结构主要包括支撑系统、驱动系统、磁化系统、传感器系统、采集系统等。通过采用辅助磁极的励磁设计,横向励磁漏磁内检测器磁化系统不但能够达到管道壁厚的磁化饱和要求,而且改善了磁化效果,使传感器位置处的漏磁场梯度减小,提高了缺陷量化精度。将新研制的管道横向励磁漏磁内检测器进行牵拉试验和工业应用验证,结果表明:与轴向励磁漏磁内检测器相比,管道横向励磁漏磁内检测器采集的轴向沟纹、轴向类裂纹缺陷的数据信号更明显,可提高轴向缺陷的检测精度与检出率,对于识别管道轴向缺陷具有重要的工程意义。(图6,表4,参14)  相似文献   

7.
针对油气管道中普遍存在的环焊缝缺陷、类裂纹缺陷以及针孔小缺陷检测能力和识别率较低的难题,通过理论分析、建模仿真、设备研制、现场应用等环节,自主研发了新一代超高清管道漏磁内检测器.该检测器实现了探头通道间距0.6 mm、轴向采样间距1mm,满足海量数据存储和采集要求,信号数据采集量增加15倍,并将漏磁检测、变形检测及定位...  相似文献   

8.
为了研制海底管道漏磁检测器,使用陆上管道漏磁检测器对海底管道的磁化效果进行研究。利用Ansys有限元仿真软件分析了海底管道厚壁管、混凝土配重层、双层管对漏磁场的影响。小口径漏磁检测器用于海底双层管检测时,被测管壁的磁场强度可达漏磁检测磁场要求阈值下限,需要改进。大口径漏磁检测器用于海底管道检测时,管壁的磁场强度能够达到漏磁检测的要求,缺陷信号量化和识别精度亦能够满足漏磁检测器的设计要求。研究成果对指导海底管道漏磁检测器的开发具有重要意义。  相似文献   

9.
由于近年来油气管道环焊缝开裂事故时有发生,环焊缝缺陷内检测技术受到广泛关注。分析了最近几年国内外油气管道环焊缝开裂事故及其原因,指出在油气管道环焊缝开裂事故中,致因缺陷多为裂纹、未焊透和未熔合,以及较为尖锐的咬边,且大多萌生于管道内表面,其应力集中程度高,极大地削弱了管道的承载能力。探讨了漏磁内检测、超声波内检测、电磁超声内检测、电磁涡流内检测4种管道环焊缝缺陷内检测技术的研究现状、技术特点、应用局限、研究方向和发展趋势,以期为攻克油气管道环焊缝检测这一国际性技术难题提供参考。  相似文献   

10.
管道内检测器性能规格直接决定着管道本体隐患是否能够被系统地识别出来,也是管道运营企业根据自身管道情况选择适宜检测器需要考虑的关键因素。通过对管道内检测器的检出率(POD)、识别率(POI)、误报率(POFC)、采样频率、定位精度、检出缺陷类型及其阈值、缺陷尺寸量化精度,以及抗外界干扰能力(如管道内壁清洁度、流速和温度影响)等性能规格关键指标的分析,提出了开挖验证和牵引试验验证管道内检测器性能规格的方法,建立了管道内检测器性能规格关键指标的计算方法,为管道运营商实现基于风险的检测提供了选择检测器类型和性能指标判定的依据。  相似文献   

11.
管道补口一旦发生失效,腐蚀介质自破损处渗入,将会严重影响管道完整性。基于漏磁内检测原理和管道补口失效形式,提出了补口防腐失效的识别与判定流程:通过分析管道补口结构特点、失效形式、可能产生腐蚀缺陷的位置与形貌特征,明确管道补口失效导致外腐蚀特征及其与漏磁内检测信号特征之间的对应关系,从而识别可能已经失效的管道补口。通过对多条管道的开挖验证,得出采用漏磁内检测技术识别与判定补口失效准确率,并验证了该方法的准确性,为基于漏磁内检测的补口失效识别与判定技术的工业化应用奠定了基础。(图7,表1,参20)  相似文献   

12.
为了对动态条件下管道漏磁内检测中的内外壁缺陷信号进行识别,针对动态条件下管壁产生的感生涡流磁场,建立了基于磁多极子场的动态漏磁场数学模型。从漏磁内检测器获取的缺陷信号中提取出内外缺陷区分的数据特征,确定了基于磁多极子场的管道内外壁缺陷区分方法:当缺陷的上升沿或下降沿至少其一满足第2阶磁场参数绝对值最大时判定为内缺陷,当上升、下降沿均不满足第2阶磁场参数绝对值最大时判定为外缺陷。通过内外缺陷试验数据的识别概率,对该方法进行了验证。新建立的区分方法辨识准确率高,突破了检测器需要借助硬件传感器的条件限制,对漏磁缺陷的识别、原理分析及内外区分具有指导作用。(图4,表3,参20)  相似文献   

13.
为减小漏磁检测器的体积,提高内检测的灵活性,采用有限元分析方法,在非磁饱和环境下,建立漏磁检测有限元模型,研究弱磁励磁对漏磁检测结果的影响,并对弱磁检测精度、信号特征和分布规律进行分析。结果表明:弱磁法具有一定的检测能力,但检测精度降低40%;管道缺陷深度在30%~40%壁厚范围内,外缺陷的径向弱磁信号不可区分;缺陷宽度小于2 mm时,外缺陷弱磁信号轴向分量幅值大于内缺陷信号幅值。该仿真结果可以作为内外缺陷评判的依据,同时对改进检测器结构具有参考价值。  相似文献   

14.
为保证输油管道超设计压力运行的安全,针对钢管力学性能、管道临界缺陷尺寸、环焊缝质量验证3个影响管道承压的重要因素,在管道沿程压力计算基础上,开展了管材小试样屈服强度统计与试验、钢管实物屈服强度与小试样屈服强度差异性分析、管道临界缺陷尺寸计算与内检测精度分析、环焊缝性能验证方案的研究。研究表明:钢管实物屈服强度与管材最小要求屈服强度之比即为最大运行压力与设计压力之比;由于压力升高,管道运行时允许的缺陷尺寸减小,其中大于临界尺寸的缺陷应保证被现有管道内检测器发现,否则应降低运行压力从而增大临界缺陷尺寸值;超设计压力运行前,应进行一次相应强度的现场试压,排除环焊缝异常。  相似文献   

15.
三轴高清漏磁智能内检测结果显示,东北管道管体存在大量螺旋焊缝缺陷,对其进行完整性评价后,需根据缺陷的严重程度开展有计划的修复工作.首先利用PipeImage软件分析管道内检测信号,对管体缺陷进行完整性评价,制作开挖单;然后在管道沿线找到参考桩,开挖后对缺陷进行确认;最后实施修复,再防腐、回填.讨论了制作开挖单的技巧和注意事项,介绍了现场误开挖时的处理流程,给出了在现场勘测中实用性较强的两个数值,即螺旋焊缝时钟位置变化1 h的轴向距离和环焊缝时钟位置变化1 h的环向长度的计算公式.  相似文献   

16.
三轴高清漏磁检测技术成功解决了老管道的焊缝检测难题,但随着老管道的逐步退役,对于新管道是否需要三轴高清漏磁检测技术成为技术人员和管理人员较为关注的问题。通过对比三轴高清漏磁内检测与传统漏磁内检测的技术优势,重点探讨了老管道与新管道本体所面临的主要风险以及对于三轴高清漏磁检测的需求。提出应该进一步加强三轴高清漏磁内检测技术的研究与应用,以期能够更加精确地检测管道缺陷,为管道后续的完整性评价提供可靠的数据参考,确保管道本质安全,对管道运营者的管理决策具有重要意义。  相似文献   

17.
三轴高清漏磁检测技术成功解决了老管道的焊缝检测难题,但随着老管道的逐步退役,对于新管道是否需要三轴高清漏磁检测技术成为技术人员和管理人员较为关注的问题。通过对比三轴高清漏磁内检测与传统漏磁内检测的技术优势,重点探讨了老管道与新管道本体所面临的主要风险以及对于三轴高清漏磁检测的需求。提出应该进一步加强三轴高清漏磁内检测技术的研究与应用,以期能够更加精确地检测管道缺陷,为管道后续的完整性评价提供可靠的数据参考,确保管道本质安全,对管道运营者的管理决策具有重要意义。  相似文献   

18.
阙永彬 《油气储运》2020,(5):536-541
管道内检测缺陷尺寸量化精度的可靠性直接影响着管道完整性评价结果,进而影响管道维修计划的制定及再检测时间的确定。将SY/T 6825—2011《管道内检测系统的鉴定》与API Std 1163-2013《内检测系统的鉴定标准》进行对比,厘清了可靠性与置信度的定义及关系,对中国管道内检测缺陷尺寸量化指标的基本概念进行了修正。结合API Std 1163-2013相关规定,并基于Agresti-Coull方法,建立了管道内检测缺陷尺寸量化精度的可靠性指标计算方法,给出了判断内检测服务商提供的管道内检测缺陷尺寸量化精度指标的可接受准则,为管道运营企业选择和验证内检测缺陷尺寸量化精度指标提供了依据。  相似文献   

19.
针对传统内检测器的技术缺陷及中俄东线天然气管道工程的实际需求,研制了一种适用于大口径管道投产前测径的新型高密度聚氨酯内检测器。安装在高密度聚氨酯泡沫主体的智能测径装置不但能够发现管道内径变化、记录变形位置,而且能够准确识别管道环焊缝数量,结合管道施工记录对环焊缝信息进行验证。论述了该检测器的工作原理、结构组成及电子系统的设计与实现,将其应用于中俄东线天然气管道工程的现场检测,结果表明:与传统皮碗式钢骨架智能测径器相比,该检测器所需运行推力更小,可支持的运行速度更高,结构更加鲁棒,维护简单,在保证检测精度与检出率的同时,可大幅降低使用成本,对于大口径管道几何变形检测具有重要的工程意义。(图7,参28)  相似文献   

20.
在管道内检测漏磁涡流复合技术中,涡流传感器信号不仅受到缺陷自身类型大小的影响,还受到缺陷处管材磁导率变化的影响。利用有限元模拟方法分析典型缺陷分别位于管道内、外壁时其周围管材相对磁导率的变化范围和趋势,发现相同规格尺寸内外缺陷区域的相对磁导率大小和变化趋势基本相同,相对磁导率与缺陷的深度和面积均存在关系,并通过测量检测线圈的电感验证了有限元模型与模拟结果的正确性。研究成果对基于漏磁涡流复合技术检测区分管壁内外缺陷具有一定指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号