首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human CD4 binds immunoglobulins   总被引:5,自引:0,他引:5  
T cell glycoprotein CD4 binds to class II major histocompatibility molecules and to the human immunodeficiency virus (HIV) envelope protein gp120. Recombinant CD4 (rCD4) bound to polyclonal immunoglobulin (Ig) and 39 of 50 (78%) human myeloma proteins. This binding depended on the Fab and not the Fc portion of Ig and was independent of the light chain. Soluble rCD4, HIV gp120, and sulfated dextrans inhibited the CD4-Ig interaction. With the use of a panel of synthetic peptides, the region critical for binding to Ig was localized to amino acids 21 to 38 of the first extracellular domain of CD4. CD4-bound antibody (Ab) complexed with antigen approximately 100 times better than Ab alone. This activity may contribute to the Ab-mediated enhancement of cellular HIV interaction that appears to depend on a trimolecular complex of HIV, antibodies to gp120, and CD4.  相似文献   

2.
Enhancement of SIV infection with soluble receptor molecules   总被引:27,自引:0,他引:27  
The CD4 receptor on human T cells has been shown to play an integral part in the human immunodeficiency virus type 1 (HIV-1) infection process. Recombinant soluble human CD4 (rCD4) was tested for its ability to inhibit SIVagm, an HIV-like virus that naturally infects African green monkeys, in order to define T cell surface receptors critical for SIVagm infection. The rCD4 was found to enhance SIVagm infection of a human T cell line by as much as 18-fold, whereas HIV-1 infection was blocked by rCD4. Induction of syncytium formation and de novo protein synthesis were observed within the first 24 hours after SIVagm infection, whereas this process took 4 to 6 days in the absence of rCD4. This enhancing effect could be inhibited by monoclonal antibodies directed to rCD4. The enhancing effect could be abrogated with antibodies from naturally infected African green monkeys with inhibitory titers of from 1:2,000 to 1:10,000; these antibodies did not neutralize SIVagm infection in the absence of rCD4. Viral enhancement of SIVagm infection by rCD4 may result from the modulation of the viral membrane through gp120-CD4 binding, thus facilitating secondary events involved in viral fusion and penetration.  相似文献   

3.
Cell fusion (syncytium formation) is a major cytopathic effect of infection by human immunodeficiency virus (HIV) and may also represent an important mechanism of CD4+ T-cell depletion in individuals infected with HIV. Syncytium formation requires the interaction of CD4 on the surface of uninfected cells with HIV envelope glycoprotein gp120 expressed on HIV-infected cells. However, several observations suggest that molecules other than CD4 play a role in HIV-induced cell fusion. The leukocyte adhesion receptor LFA-1 is involved in a broad range of leukocyte interactions mediated by diverse receptor-ligand systems including CD4-class II major histocompatibility complex (MHC) molecules. Possible mimicry of class II MHC molecules by gp120 in its interaction with CD4 prompted an examination of the role of LFA-1 in HIV-induced cell fusion. A monoclonal antibody against LFA-1 completely inhibited HIV-induced syncytium formation. The antibody did not block binding of gp120 to CD4. This demonstrates that a molecule other than CD4 is also involved in cell fusion mediated by HIV.  相似文献   

4.
Infection by human immunodeficiency virus type-1 (HIV-1) is initiated when its envelope protein, gp120, binds to its receptor, the cell surface glycoprotein CD4. Small molecules, termed N-carbomethoxycarbonyl-prolyl-phenylalanyl benzyl esters (CPFs), blocked this binding. CPFs interacted with gp120 and did not interfere with the binding of CD4 to class II major histocompatibility complex molecules. One CPF isomer, CPF(DD), preserved CD4-dependent T cell function while inhibiting HIV-1 infection of H9 tumor cells and human T cells. Although the production of viral proteins in infected T cells is unaltered by CPF(DD), this compound prevents the spread of infection in an in vitro model system.  相似文献   

5.
Cytolytic T lymphocyte (CTL) responses were evaluated in humans immunized with recombinant human immunodeficiency virus type 1 (HIV) envelope glycoprotein gp160. Some vaccinees had gp160-specific CTLs that were shown by cloning to be CD4+. Although induced by exogenous antigen, most gp160-specific CTL clones also recognized gp160 synthesized endogenously in target cells. These clones lysed autologous CD4+ T lymphoblasts infected with HIV. Of particular interest were certain vaccine-induced clones that lysed HIV-infected cells, recognized gp160 from diverse HIV isolates, and did not participate in "innocent bystander" killing of noninfected CD4+ T cells that had bound gp120.  相似文献   

6.
The human immunodeficiency virus (HIV) binds to CD4-positive cells through interaction of its envelope glycoprotein (gp120) with the CD4 molecule. CD4 is a prominent immunoregulatory molecule, and chronic exposure to antibody against CD4 (anti-CD4) has been shown to cause immunodeficiency in mice. T cell-dependent in vitro immune responses can also be inhibited by anti-CD4. Experimental findings reported here indicate that CD4-bound gp120 attracts gp120-specific antibodies derived from the blood of HIV-seropositive individuals to form a trimolecular complex with itself and CD4. Thus targeted to CD4, the gp120-specific antibody functions as an antibody to CD4; it cross-links and modulates the CD4 molecules and suppresses the activation of T cells as measured by mobilization of intracellular calcium (Ca2i+). The synergism between gp120 and anti-gp120 in blocking T cell activation occurs at low concentrations of both components. Neither gp120 nor anti-gp120 inhibits T cell activation by itself in the concentrations tested.  相似文献   

7.
Dissociation of gp120 from HIV-1 virions induced by soluble CD4   总被引:108,自引:0,他引:108  
The CD4 antigen is the high affinity cellular receptor for the human immunodeficiency virus type-1 (HIV-1). Binding of recombinant soluble CD4 (sCD4) or the purified V1 domain of sCD4 to the surface glycoprotein gp120 on virions resulted in rapid dissociation of gp120 from its complex with the transmembrane glycoprotein gp41. This may represent the initial stage in virus-cell and cell-cell fusion. Shedding of gp120 from virions induced by sCD4 may also contribute to the mechanism by which these soluble receptor molecules neutralize HIV-1.  相似文献   

8.
The MHC-binding and gp120-binding functions of CD4 are separable   总被引:18,自引:0,他引:18  
CD4 is a cell surface glycoprotein that is thought to interact with nonpolymorphic determinants of class II major histocompatibility (MHC) molecules. CD4 is also the receptor for the human immunodeficiency virus (HIV), binding with high affinity to the HIV-1 envelope glycoprotein, gp120. Homolog-scanning mutagenesis was used to identify CD4 regions that are important in class II MHC binding and to determine whether the gp120 and class II MHC binding sites of CD4 are related. Class II MHC binding was abolished by mutations in each of the first three immunoglobulin-like domains of CD4. The gp120 binding could be abolished without affecting class II MHC binding and vice versa, although at least one mutation examined reduced both functions significantly. These findings indicate that, while there may be overlap between the gp120 and class II MHC binding sites of CD4, these sites are distinct and can be separated. Thus it should be possible to design CD4 analogs that can block HIV infectivity but intrinsically lack the ability to affect the normal immune response by binding to class II MHC molecules.  相似文献   

9.
Blocking of HIV-1 infectivity by a soluble, secreted form of the CD4 antigen   总被引:77,自引:0,他引:77  
The initial event in the infection of human T lymphocytes, macrophages, and other cells by human immunodeficiency virus (HIV-1) is the attachment of the HIV-1 envelope glycoprotein gp120 to its cellular receptor, CD4. As a step toward designing antagonists of this binding event, soluble, secreted forms of CD4 were produced by transfection of mammalian cells with vectors encoding versions of CD4 lacking its transmembrane and cytoplasmic domains. The soluble CD4 so produced binds gp120 with an affinity and specificity comparable to intact CD4 and is capable of neutralizing the infectivity of HIV-1. These studies reveal that the high-affinity CD4-gp120 interaction does not require other cell or viral components and may establish a novel basis for therapeutic intervention in the acquired immune deficiency syndrome (AIDS).  相似文献   

10.
Although the CD4 molecule is the principal cellular receptor for the human immunodeficiency virus (HIV), several CD4-negative cell lines are susceptible to infection with one or more HIV strains. These findings indicate that there are alternate modes of viral entry, perhaps involving one or more receptor molecules. Antibodies against galactosyl ceramide (galactocerebroside, or GalC) inhibited viral internalization and infection in two CD4-negative cell lines derived from the nervous system: U373-MG and SK-N-MC. Furthermore, recombinant HIV surface glycoprotein gp120 bound to GalC but not to other glycolipids. These results suggest a role for GalC or a highly related molecule in HIV entry into neural cells.  相似文献   

11.
Erratum     
《Science (New York, N.Y.)》1990,249(4967):347
In figure 2B (p. 1236) of the report "Induction of CD4(+) human cytolytic T cells specific for HIV-infected cells by a gp160 subunit vaccine" by R. J. Orentas et al. (8 June, p. 1234), the labels for HIV-infected and mock-infected cells were reversed.  相似文献   

12.
Alterations in T4 (CD4) protein and mRNA synthesis in cells infected with HIV   总被引:75,自引:0,他引:75  
Cells infected with the human immunodeficiency virus (HIV) show decreased expression of the 58-kilodalton T4 (CD4) antigen on their surface. In this study, the effect of HIV infection on the synthesis of T4 messenger RNA (mRNA) and protein products was evaluated in T-cell lines. Metabolically labeled lysates from the T4+ cell line Sup-T1 were immunoprecipitated with monoclonal antibodies to T4. Compared with uninfected cells, HIV-infected Sup-T1 cells showed decreased amounts of T4 that coprecipitated with both the 120-kilodalton viral envelope and the 150-kilodalton envelope precursor molecules. In four of five HIV-producing T-cell lines studied, the steady-state levels of T4 mRNA were also reduced. Thus, the decreased T4 antigen on HIV-infected cells is due to at least three factors: reduced steady-state levels of T4-specific mRNA, reduced amounts of immunoprecipitable T4 antigen, and the complexing of available T4 antigen with viral envelope gene products. The data suggested that the T4 protein produced after infection may be complexed with viral envelope gene products within infected cells. Retroviral envelope-receptor complexes may thus participate in a general mechanism by which receptors for retroviruses are down-modulated and alterations in cellular function develop after infection.  相似文献   

13.
Antibodies against the CD4 binding site (CD4bs) on the HIV-1 spike protein gp120 can show exceptional potency and breadth. We determined structures of NIH45-46, a more potent clonal variant of VRC01, alone and bound to gp120. Comparisons with VRC01-gp120 revealed that a four-residue insertion in heavy chain complementarity-determining region 3 (CDRH3) contributed to increased interaction between NIH45-46 and the gp120 inner domain, which correlated with enhanced neutralization. We used structure-based design to create NIH45-46(G54W), a single substitution in CDRH2 that increases contact with the gp120 bridging sheet and improves breadth and potency, critical properties for potential clinical use, by an order of magnitude. Together with the NIH45-46-gp120 structure, these results indicate that gp120 inner domain and bridging sheet residues should be included in immunogens to elicit CD4bs antibodies.  相似文献   

14.
We present the crystal structure at 2.7 angstrom resolution of the human antibody IgG1 b12. Antibody b12 recognizes the CD4-binding site of human immunodeficiency virus-1 (HIV-1) gp120 and is one of only two known antibodies against gp120 capable of broad and potent neutralization of primary HIV-1 isolates. A key feature of the antibody-combining site is the protruding, finger-like long CDR H3 that can penetrate the recessed CD4-binding site of gp120. A docking model of b12 and gp120 reveals severe structural constraints that explain the extraordinary challenge in eliciting effective neutralizing antibodies similar to b12. The structure, together with mutagenesis studies, provides a rationale for the extensive cross-reactivity of b12 and a valuable framework for the design of HIV-1 vaccines capable of eliciting b12-like activity.  相似文献   

15.
The third variable region (V3) of the HIV-1 gp120 envelope glycoprotein is immunodominant and contains features essential for coreceptor binding. We determined the structure of V3 in the context of an HIV-1 gp120 core complexed to the CD4 receptor and to the X5 antibody at 3.5 angstrom resolution. Binding of gp120 to cell-surface CD4 would position V3 so that its coreceptor-binding tip protrudes 30 angstroms from the core toward the target cell membrane. The extended nature and antibody accessibility of V3 explain its immunodominance. Together, the results provide a structural rationale for the role of V3 in HIV entry and neutralization.  相似文献   

16.
The CCR5 co-receptor binds to the HIV-1 gp120 envelope glycoprotein and facilitates HIV-1 entry into cells. Its N terminus is tyrosine-sulfated, as are many antibodies that react with the co-receptor binding site on gp120. We applied nuclear magnetic resonance and crystallographic techniques to analyze the structure of the CCR5 N terminus and that of the tyrosine-sulfated antibody 412d in complex with gp120 and CD4. The conformations of tyrosine-sulfated regions of CCR5 (alpha-helix) and 412d (extended loop) are surprisingly different. Nonetheless, a critical sulfotyrosine on CCR5 and on 412d induces similar structural rearrangements in gp120. These results now provide a framework for understanding HIV-1 interactions with the CCR5 N terminus during viral entry and define a conserved site on gp120, whose recognition of sulfotyrosine engenders posttranslational mimicry by the immune system.  相似文献   

17.
Immunization with either an Escherichia coli recombinant segment of the human T-cell lymphotropic virus (HTLV-III/LAV) envelope protein (gp 120) or with deglycosylated gp 120 envelope protein produced antibodies that neutralize HTLV-III/LAV infection in vitro. Virus neutralization titers of these antisera were equivalent to those obtained with purified native gp120 as immunogen. This localizes at least one class of neutralizing epitopes to the carboxyl-terminal half of the molecule. In addition, native gp120 prevented HTLV-III/LAV--mediated cell fusion, whereas the recombinant gp120 fragment did not. This shows that although glycosylation is not required for induction of neutralizing antibodies, it may be important for interaction with CD4, the virus receptor. A segment of the HTLV-III/LAV envelope produced in E. coli may be an important ingredient of a vaccine for acquired immune deficiency syndrome.  相似文献   

18.
The art/trs transactivator protein of human immunodeficiency virus (HIV) was expressed in mammalian cells as a 19-kilodalton protein that was immunoreactive with sera from HIV-infected patients. Separate plasmids encoding the art/trs protein, the tat protein, or the envelope glycoprotein gp120 were used to demonstrate that both art/trs and tat are absolutely required for the synthesis of gp120 from its cognate messenger RNA. In addition, both the tat and art/trs proteins influence the level of envelope RNA. The results suggest that art/trs and tat may be ideal targets for potential anti-HIV agents in AIDS therapy.  相似文献   

19.
The development of an immunodeficiency syndrome of mice caused by a replication-defective murine leukemia virus (MuLV) is paradoxically associated with a rapid activation and proliferation of CD4+ T cells that are dependent on the presence of B cells. The responses of normal spleen cells to B cell lines that express the defective virus indicated that these lines express a cell surface determinant that shares "superantigenic" properties with some microbial antigens and Mls-like self antigens. This antigen elicited a potent proliferative response that was dependent on the presence of CD4+ T cells and was associated with selective expansion of cells bearing V beta 5. This response was markedly inhibited by a monoclonal antibody specific for the MuLV gag-encoded p30 antigen.  相似文献   

20.
Most immature CD4+CD8+ thymocytes express only a small number of T cell receptor (TCR) molecules on their surface, and the TCR molecules they do express are only marginally capable of transducing intracellular signals. TCR expression and function was not intrinsically low in immature CD4+CD8+ thymocytes, but was found to be actively inhibited by CD4-mediated signals. Indeed, release of CD4+CD8+ thymocytes from CD4-mediated signals resulted in significant increases in both TCR expression and signaling function. These results suggest that, in CD4+CD8+ cells developing in the thymus, increased TCR expression and function requires release from CD4-mediated inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号