首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
【目的】探讨星载高分五号(GF-5)高光谱影像不同光谱波段对SOM 含量预测精度差 异,明确有效光谱波段范围,以便提高SOM 含量高光谱预测精度。【方法】该研究以黑龙江 省建三江农垦区为研究区域,将GF-5 可见短波红外高光谱相机(AHSI)获取的高光谱数据 划分为可见光- 近红外(VNIR)、短波红外(SWIR)和VNIR-SWIR 3 种不同光谱波段,并 将光谱反射率进行了9 种光谱数学变换;分别采用多元逐步回归(MLSR)和偏最小二乘回 归(PLSR)构建SOM 含量预测模型,评价分析了3 种不同光谱波段预测SOM 含量的精度差 异。【结果】在MLSR 模型中,VNIR-SWIR 的对数倒数一阶微分SOM 含量预测精度相对较 高,验证精度决定系数R2 val 为0.383,均方根误差RMSEP 为5.009;在PLSR 模型中,VNIR 反射率的SOM 含量预测精度较高,验证精度R2 val 为0.359,RMSEP 为4.170。【结论】GF-5 AHSI SOM 含量预测精度较高的光谱波段为VNIR 和VNIR-SWIR。卫星数据质量、研究区域 自然条件、数据预处理过程、建模方法选择等因素共同影响SOM 含量预测模型精度,通过 技术和方法改进,GF-5 数据预测SOM 含量的潜力更大。  相似文献   

2.
【目的】研究传统土壤全氮含量测定方法,解决复杂、耗时、耗力等问题。【方法】以新疆干旱区灰漠土为研究对象,运用经典统计学和光谱学相结合的方法,研究灰漠土土壤全氮含量的光谱反射特性,通过对原始光谱的数据变换和相关性分析,构建了土壤全氮含量的高光谱估测模型,并对模型进行对比和验证。【结果】土壤中全氮含量不同光谱反射特性趋势相近,土壤的光谱反射率在780、1 800和2 140 nm波长附近出现波峰,在1 910 nm附近有明显的波谷,土壤全氮含量与原始光谱反射率相关性较差。通过一阶微分处理后的光谱数据与全氮含量的相关性显著优于原始光谱和二阶微分处理,最大相关系数为0.819,达到极显著相关;利用一阶微分变换从中提取特征波段667和1 414 nm,建立土壤全氮含量的估测模型:Y=2 698.048 X667-1062.149 X1414-0.015,R2为0.75,对估测模型进行验证发现,R2为0.80,当全氮含量过大或过小时,模型估测偏差相对较大,总体预测精度较高。【结论】高光谱分析技术对土壤全氮含量的预测具有一定的意义,利用估测模型可以快速鉴定土壤全氮含量。  相似文献   

3.
【目的】建立基于可见-近红外光谱的土壤游离铁精确预测模型,简单、快速、经济地预测土壤游离铁,有助于研究土壤发生和分类。【方法】采集广西壮族自治区的铁铝土、富铁土、淋溶土和雏形土等82个旱地土壤剖面的B层土壤,进行室内土壤化学分析、光谱测定,分析不同光谱变换后的光谱反射率与土壤游离铁含量的相关性。基于特征波段利用偏最小二乘回归(PLSR)和逐步多元线性回归(SMLR)法建立土壤游离铁含量光谱预测模型,通过决定系数(R2)、均方根误差(RMSE)和相对预测偏差(PRD)确定最优模型。【结果】土壤光谱曲线分别在457、800和900 nm波段附近有明显的游离铁吸收和反射峰特征;土壤游离铁含量与原始光谱反射率呈负相关;原始光谱经过微分变换后,游离铁含量与光谱反射率相关性显著提高;基于400~580和760~1 300 nm特征波段和一阶微分光谱变换的SMLR模型预测精度最高,其验证集的R2和RPD分别为0.85和2.62,RMSE为8.41 g·kg~(-1)。【结论】将可见近红外光谱技术应用于土壤游离铁含量高效快速地预测具有良好的可行性。广西旱地土壤光谱反射率与土壤游离铁含量具有高度的相关性,应用逐步多元线性回归方法可以很好地建立土壤游离铁含量反演模型。  相似文献   

4.
【目的 】结合分数阶微分和异常值识别,提高土壤有机质模型反演精度,实现土壤有机质含量的快速、准确估计。【方法 】文章以吉林省伊通县黑土区为研究区,基于实地采集的213个土壤样本和HyMap-C机载高光谱传感器获取高光谱影像,选择S-G函数和分数阶微分进行光谱预处理,竞争性自适应重加权采样(Competitive Adaptive Reweighted Sampling,CARS)提取特征波段建立土壤有机质含量偏最小二乘回归(Partial Least Squares Regression,PLSR)反演模型,并使用蒙特卡洛交叉验证(Monte Carlo Cross-Validation,MCCV)进行异常值识别。【结果 】(1)将分数阶微分用于机载高光谱可以放大光谱特征,阶数越高、特征越明显,低阶分数微分对噪音不敏感;(2) CARS方法能有效压缩光谱信息;全样本建模中0.4阶分数阶微分CARS-PLSR建模表现较优,但总体精度仍然不高;(3)使用MCCV剔除异常值后,0.6阶分数阶微分CARS-PLSR建立的土壤有机质含量反演模型精度最高,训练集和测试集的均方误差分别为0.219%...  相似文献   

5.
基于高光谱的喀斯特地区典型农田土壤有机质含量反演   总被引:1,自引:0,他引:1  
【目的】利用高光谱数据定量反演喀斯特地区土壤有机质含量,为喀斯特地区快速、大范围、实时地监测土壤有机质含量提供更多的技术手段。【方法】利用机载高光谱成像系统和便携式地物光谱仪分别获取土壤光谱数据,基于原始光谱反射率和不同光谱变换数据,分析其与土壤有机质含量的相关性,以偏最小二乘法建立模型预测土壤有机质含量。【结果】2种数据源都可以用于土壤有机质含量预测,其中,基于ASD光谱一阶微分变换建立的模型预测精度较高,验证集决定系数(Rv~2)为0.910,相对分析误差(RPD)为2.68;基于GS光谱二阶微分变换建立的模型预测效果较好,验证集Rv~2为0.772,RPD为1.49。【结论】ASD光谱与GS光谱建模预测精度相差较大,ASD光谱客观条件影响较小、光谱波段更宽、光谱分辨率更高,具有更好的预测能力;低空无人机获取的GS光谱也具有一定的预测能力。  相似文献   

6.
以张家港农田土壤作为研究对象,在实验室测定土壤重金属元素As、Cd、Cr、Cu、Zn、Ni、Pb、Hg的含量,并与土壤可见近红外高光谱数据建立土壤重金属含量的定量估测模型,以快速获取研究区农田的土壤重金属含量。为保证模型预测的精度和稳定性,首先,对原始高光谱数据进行平滑处理,并进行一阶导数、倒数一阶导数、倒数的对数一阶导数、平方根一阶导数和连续统去除等形式的光谱变换;然后,提取不同变换光谱的特征波段进行相关性分析;最后,通过逐步回归法建立重金属含量的定量估算模型。结果表明:张家港市农田土壤中Cd、Hg、Cu、Zn存在一定的污染风险。在高光谱的不同变换形式中,一阶导数和连续统去除与重金属含量的相关系数高于其他变换形式。基于8种土壤重金属含量与高光谱数据建立的定量估算模型具有良好的预测精度。Cd、Hg、Cr、As、Cu、Zn、Ni、Pb估算模型的实际值与验证值的拟合度分别为0.874、0.879、0.800、0.646、0.513、0.655、0.603和0.542,可用于预测张家港市的农田土壤重金属含量。  相似文献   

7.
【目的】为更快速准确地估算土壤全钾含量。【方法】本文以土壤高光谱数据和实验室分析所得的土壤全钾含量数据为数据源,研究土壤光谱与土壤全钾含量的关系。在土壤原始光谱预处理的基础上,对其进行光谱平滑、一阶微分、二阶微分和倒数对数等光谱变换处理,筛选出与对土壤全钾含量相关性最高的光谱指标,最终建立模型预测土壤全钾含量。【结果】基于一阶微分变换的光谱变量是估算土壤全钾含量的最佳光谱指标,其构建的土壤全钾高光谱反演模型(y=2E+06x~2+11328x+16.372)效果最佳,决定系数R~2为0.64,均方根误差RMSE为4.850 g/kg。【结论】利用该模型快速估算广东省土壤全钾含量是可行的。  相似文献   

8.
脐橙糖度近红外光谱在线检测的建模变量优选   总被引:1,自引:0,他引:1  
【目的】采用小波压缩结合遗传算法,优选脐橙糖度近红外光谱在线检测的建模变量,提高在线检测精度。【方法】利用近红外光谱检测装置采集脐橙样品的光谱,并将其转换为反射比光谱,在700.28~933.79 nm波段,利用小波变换将一阶微分处理后的近红外反射比光谱变量压缩成小波系数变量。经遗传算法优选后,建立偏最小二乘法(PLS)模型,并对该模型的预测结果进行评价。【结果】利用小波压缩结合遗传算法优选变量建立的脐橙糖度PLS模型,预测效果最优,模型的相关系数为0.759,模型预测均方根误差为0.468 °Brix。【结论】采用小波压缩结合遗传算法对变量进行优选,可提高脐橙糖度近红外光谱在线检测的精度。  相似文献   

9.
针对土默川平原地区的土壤盐分含量提出了偏最小二乘与随机森林相结合(RF-PLSR、PLSR-RF)对土壤盐分含量进行预测的回归反演模型.该研究共采集45份土壤样本,随机选取35份为建模集,10份为验证集.试验首先对采集到的高光谱土壤图像进行分割处理提取出土壤在400~1000 nm的原始反射光谱,其次对原始反射光谱进行4种光谱变换(一阶微分、多元散射校正的一阶微分、SG平滑去噪的一阶微分、对数的一阶微分),并与土壤的实测盐分量进行相关性分析(CA),利用相关系数选取敏感波段,最后建立偏最小二乘与随机森林结合的回归反演模型.结果表明,与偏最小二乘回归、随机森林回归单独建模相比,2种模型结合后的预测精度有明显的改善.光谱经过对数的一阶微分变换建立的PLSR-RF反演模型更为明显,其建模集决定系数Rc 2为0.852,均方根误差RMSEc为0.102 g/kg,相对分析误差RPDc为2.600,验证集决定系数Rv 2为0.941,均方根误差RMSEv为0.049 g/kg,相对分析误差RPDv为4.117.  相似文献   

10.
水稻土中有机质光谱常常受到水分、秸秆等土壤背景的影响,为了减弱或去除非有机质组分对有机质光谱的影响,构建南方水稻土有机质估算模型。利用机载高光谱(GaiaSky Mini2 VN)作为数据源,对原始反射率进行单一和组合变换(去除包络线、倒数、对数、一阶微分、二阶微分单一变换和倒数一阶微分、对数一阶微分、倒数对数组合变换)提取一维特征光谱;通过对变化后光谱进行比值和归一化处理,提取二维特征光谱;构建基于特征光谱的线性(多元回归、偏最小二乘)和非线性(反向传播神经网络、支持向量机)有机质预测模型,监测南方水稻土有机质含量。结果表明:一维光谱变换能显著增强光谱对有机质响应的敏感度,二维光谱变换能充分挖掘光谱信息,增强有机质与光谱之间的内在联系,提高建模精度。非线性模型(BPNN、SVM)尤其是BPNN对土壤有机质拟合性好,建模精度高。基于原始反射率比值指数建立的BPNN模型建模精度达到0952,检验精度达到0889,建模效果最优。该结果适用于南方水稻土有机质监测,对机载高光谱在土壤有机质监测中的特征波段提取和建模方法选择具有重要借鉴意义,对现代农业发展管理提供新的思路。  相似文献   

11.
对高光谱数据进行预处理是提升高光谱建模精度十分必要且有效的途径。利用高光谱技术分析春小麦作物光谱及其叶绿素含量的变化,对原始光谱反射率及对应的对数、倒数、平方根、对数倒数等4种数学变换及其一阶、二阶微分进行预处理运算,分析春小麦叶片叶绿素含量与预处理后的光谱数据相关性,基于选取的敏感波段对春小麦抽穗期叶绿素含量进行偏最小二乘回归法、BP神经网络2种方法建模并进行模型验证及比较。结果表明:对原始光谱数据数学变换的微分预处理可以明显提高春小麦叶片叶绿素含量与光谱反射率的相关性;通过显著性检验的敏感波段数量经一阶、二阶微分预处理呈现明显增加趋势,对应数学变换的波段数量有所不同;对数变换的二阶微分处理所建立的PLSR模型为最优模型,该模型精度参数为决定系数R■=0.93,校正均方根误差RMSE_c=2.53,预测决定系数R~2_p=0.91,预测均方根误差RMSE_p=2.41,相对分析误差RPD=3.20。说明数学变换的微分预处理过后的模型精度和稳健性有了大幅度的提升,并且运用在高光谱遥感反演春小麦抽穗期叶片叶绿素含量上是可行的。  相似文献   

12.
通过对土壤电导率和光谱测定,分析了南方丘陵稻田土壤电阻率特征、原始光谱数据及重采样光谱数据特征。在光谱重采样基础上进一步构建光谱包络线去除变换、光谱反射率倒数(1/R)、对数[ln(1/R)]、平方根(R0.5)、一阶微分等单一或复合变换模型。通过横向、纵向综合比较分析不同模型的反射率与电阻率相关性分析的曲线差异,着重探讨了基于一阶微分的数据变换模型间土壤电阻率与光谱反射率间相关性强弱,结果表明:(1)基于一阶微分变换的模型可以对重叠混合光谱进行分解以便识别,扩大样品之间的光谱特征差异,发掘敏感波段的光谱吸收、反射特征;(2)综合反射率的平方根的一阶微分变换、反射率的倒数的对数及反射率对数的一阶微分等模型得出,在波段为382 nm处,土壤电阻率与光谱反射率间相关系数最高达0.788,在波段为555~560 nm,多个微分变换模型相关性系数在0.7以上,可为后续反演因子的确定及土壤电阻率高光谱估测回归模型的建立提供参考。  相似文献   

13.
博斯腾湖西岸湖滨带土壤盐分高光谱反演   总被引:3,自引:0,他引:3  
选取博斯腾湖西岸湖滨带为研究区,沿垂直湖岸线方向采集14个土壤剖面70个样本,利用ASD FieldSpec3地物光谱仪获取高光谱数据,基于Q型聚类分析研究不同含盐量土壤光谱特征,对土壤光谱反射率与含盐量做逐波段相关分析和显著性检验,筛选不同光谱变换下的敏感波段,通过多元逐步回归和偏最小二乘回归方法,分别以敏感波段和全波段光谱构建12个土壤含盐量反演模型,优选最佳反演模型。结果表明:17种高光谱变换中, 4种最优光谱变换使土壤含盐量与Savitzky-Golay平滑后的反射率极显著相关波段数明显增多,分别是反射率的一阶微分、平方根一阶微分、对数倒数一阶微分、倒数对数一阶微分,综合确定盐分敏感波段聚集在749、1 024、1 083、1 230、1 677和2 387 nm处;以对数倒数一阶微分光谱全波段建立的偏最小二乘回归模型更适合该区0~50 cm土壤含盐量的高光谱反演,其建模和验证决定系数R~2分别为0.93和0.85,均方根误差RMSE分别为0.37和0.42,相对预测偏差RPD为3.57。  相似文献   

14.
为了探寻快速、准确估测土壤有机质含量的方法以推动精准农业化进程,以北疆绿洲农田灰漠土为研究对象,通过野外实地调查收集土壤样品,室内化学分析测得土壤样品有机质含量,暗室内利用SVC HR-768高光谱仪测定土壤样品光谱反射率。通过对土壤光谱反射率进行倒数、对数、一阶微分、倒数的一阶微分、对数的一阶微分变换,运用单相关分析法提取土壤光谱特征波段,采用多元逐步方法对土壤有机质含量定量反演,分析研究土壤有机质含量和室内土壤光谱的特征关系。结果表明,在波长567、1 697 nm和2 221 nm处,采用反射率对数的一阶微分建立的土壤有机质含量反演模型预测精度最高,模型决定系数达到0.82。北疆绿洲农田灰漠土土壤有机质含量高光谱反演模型的建立为土壤有机质的快速测定提供了新的途径。  相似文献   

15.
黄土高原煤矿区复垦农田土壤有机质含量的高光谱预测   总被引:6,自引:0,他引:6  
南锋  朱洪芬  毕如田 《中国农业科学》2016,49(11):2126-2135
【目的】针对黄土高原丘陵地多、地形复杂、有机质含量低、采样困难以及因采煤活动引起大面积土地损毁等问题,在土地复垦与综合整治过程中,为快速定量监测与评估复垦农田土壤质量提供一种新的方法。【方法】以山西省襄垣县复垦农田土壤为研究对象,选取由北向南土地损毁中间条带状区域采集样品152个,进行室内土壤农化分析、光谱测定,运用ParLes 3.1软件对光谱曲线进行多元散射校正(multipication scatter correction,MSC)、基线偏移(baseline offset correction,BOC)和Savitzky-Golay filter平滑去噪预处理。对土壤原始光谱反射率(raw spectral reflectance,R)作一阶微分(first order differential reflectance,D(R))和倒数的对数变换(inverse-lg reflectance ,lg(1/R)),分析3种不同变换形式的光谱数据与土壤有机质含量的相关性,相关系数通过P=0.01水平显著性检验来确定显著性波段的范围。基于全波段(400-2400 nm)和显著性波段利用偏最小二乘回归(partial least squares regression,PLSR)分析方法建立该区域土壤有机质含量高光谱预测模型,通过模型精度评价指标:决定系数(coefficient of determination,R2)、均方根误差(root mean square error,RMSE)和相对预测偏差(residual prediction deviation,PRD)确定最优模型。【结果】通过P=0.01水平显著性检验的波段范围为:R的400-1 800、1880-2 400 nm;D(R)的420-790、1 020-1 040、2 150-2 200 nm;lg(1/R)的400-1 830、1 860-2 400 nm。光谱与有机质含量的相关系数绝对值最大的波段是R的800 nm;D(R)的600 nm;lg(1/R)的760 nm。进行D(R)变换,光谱曲线的吸收特征更加明显,相关系数在可见光(400-800 nm)波段范围内有所增加,其最大值由0.72提高到了0.82;基于显著性波段的PLSR建模效果优于全波段,其中lg(1/R)变换的预测精度为最佳,具有很好的预测能力,其校正模型的R2和RMSE分别为0.95、7.64,预测模型的R2、RMSE和RPD分别为0.85、3.00、2.56;基于全波段的R-PLSR和lg(1/R)-PLSR模型具有较好的预测能力,其预测模型的R2、RMSE和RPD分别为0.79、3.64、2.10和0.79、3.53、2.17,而D(R)-PLSR模型只能进行粗略估测,其预测模型的R2、RMSE和RPD分别为0.61、5.43、1.41。综合分析全波段和显著性波段3种光谱数据的预测精度,发现基于显著性波段的R-PLSR、D(R)-PLSR、lg(1/R)-PLSR模型均取得了显著的预测效果。【结论】研究区土壤光谱反射率与土壤有机质含量具有高度的相关性,应用偏最小二乘回归分析方法可以很好地建立土壤有机质含量反演模型。  相似文献   

16.
 【目的】探索建立基于近红外光谱技术的土壤微量元素监测技术。【方法】采集三峡库区(重庆)主要加工甜橙基地果园背景土壤样品168个,随机选取100个作为建模样本,其余为检验样本;测定所有样本的近红外反射光谱和土壤Fe、Mn、Zn全含量;运用最佳光谱预处理方法和偏最小二乘法(partial least square method, PLS)及内部交叉验证方法建立校正模型,并进行模型精度检验。【结果】变量标准化(standard normal variables,SNV)为土壤Fe、Mn、Zn含量近红外光谱预测的最佳光谱预处理方法;运用SNV光谱预处理和偏最小二乘法(PLS)及内部交叉验证法建立的土壤Fe、Mn、Zn含量校正模型,95%置信区间内的预测精度分别为92.65%、95.59%和95.59%。【结论】利用近红外反射光谱技术进行土壤Fe、Mn、Zn含量检测可行且精度较高。  相似文献   

17.
基于冠层高光谱数据与马氏距离的马铃薯品种识别   总被引:1,自引:0,他引:1  
为丰富高光谱数据在精细农业中的应用,本研究基于冠层光谱数据进行不同马铃薯品种区分研究。利用田间实测的6-8月的马铃薯原始光谱数据以及经过一阶微分、对数一阶微分、包络线去除处理后的光谱,采用马氏距离法选择3种马铃薯光谱差异显著波段,再利用逐步判别法检验波段识别精度。结果表明,7月份经过对数一阶微分变换选取的特征波段识别精度最高,达87. 7%。不同生育期内,多种预处理方法下的光谱识别能力有差异。6月份包络线去除法的识别精度最高,7月份对数一阶微分处理下的识别精度最高,而8月份原始光谱的识别精度最高。提取的特征波段多位于红光及近红外波段。研究结果表明基于高光谱数据,借助马氏距离与逐步判别法可以区分马铃薯品种。  相似文献   

18.
小波分析用于土壤速效钾含量高光谱估测研究   总被引:7,自引:0,他引:7  
【目的】对土壤高光谱数据去噪提纯,提高土壤速效钾含量高光谱估测模型的精度和实用性。【方法】选取土壤有机质、碱解氮、有效磷含量近似而速效钾含量差异较大的样本76个,对土壤样本反射率对数的一阶导数光谱分别基于4种函数进行多层小波离散分解;提取小波低频系数,构建土壤速效钾含量高光谱估测模型。【结果】小波分解1-3层获得的低频系数可用以代表原始光谱。基于各小波函数相同尺度的低频系数,土壤速效钾含量估测建模精度差异不大。其中基于Bior 1.3函数分解的第2层低频系数建模精度略高,作为最佳估测模型,在数据压缩到25%、反映输入光谱信息95.6%的基础上,建模R2达到0.976,RMSE为10.66 mg•kg-1,经验证模型具有较好的预测准确度。【结论】通过小波分析获得小波系数,既提取了土壤高光谱信息,又对数据进行了压缩,结合偏最小二乘回归预测土壤速效钾含量是可行的。  相似文献   

19.
【目的】 剔除土壤高光谱中包含的大量冗余和无效信息,探明土壤有效磷(SAP)的敏感波段,简化SAP的高光谱估算模型并提高模型的预测精度。【方法】 文章以四川省崇州市西河流域110个土壤样本为研究对象,利用ASD Fieldspec3地物光谱仪在室内条件下测定350~2 500 nm波段范围的土壤高光谱数据。对光谱数据进行预处理后,采用连续投影算法(SPA)和竞争性自适应重加权算法(CARS)优选的波长变量作为建模参数,运用偏最小二乘回归(PLSR)方法建立模型并比较其精度。【结果】 结果表明,标准正态变换预处理方法是SAP的最佳土壤光谱数据预处理方法。基于标准正态变换后的光谱数据,CARS、SPA算法可将预测SAP的关键波段变量分别压缩至54和13个,CARS-PLSR模型与SPA-PLSR模型相比,相关系数由0.894提高到0.945,均方根误差由5.73降低到3.56。【结论】 土壤高光谱数据经标准正态变换后,采用CARS-PLSR算法可有效提高有效磷含量预测的鲁棒性。该结果可为高光谱数据快速反演土壤有效磷含量提供理论依据。  相似文献   

20.
高光谱具有波段窄、波段多的特点,能够提供比多光谱遥感更精细的地物光谱信息,为识别光谱性质相似的森林树种提供了有效途径。对南疆盆地4种主栽果树树种(苹果、香梨、核桃、红枣)的冠层光谱数据进行测量,用BP神经网络对原始光谱数据及其经一阶微分、对数一阶微分、归一化一阶微分变换后的光谱数据进行分类识别,结果表明:对数一阶微分和归一化一阶微分变换后树种识别精度分别为94%和88%以上;红边区的光谱波段包含了大量树种识别的信息;采用BP神经网络能够对南疆盆地主栽果树进行基于冠层光谱的分类,而且分类精度相对较高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号