首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
基于光能利用率模型(CASA),利用遥感数据、气象数据和基础地理数据,测算了2001-2013年黄土高原植被净初级生产力(NPP),并辅以一元线性回归、Hurst指数及相关分析等方法,分析了2001-2013年黄土高原NPP时空变化特征、未来变化趋势及其驱动因素.结果表明,2001-2013年黄土高原植被年均NPP呈显著增加趋势,年增速为4.9 g/(m2·a).黄土高原植被NPP空间分布差异显著,表现出由东南向西北递减的趋势.黄土高原植被NPP呈增加趋势和减少趋势的面积分别占78.0%和22.0%.Hurst指数表明研究区未来植被NPP变化的正向特征显著,呈持续性和反持续性的比重分别为72.1%和28.9%.黄土高原植被NPP变化与降水、气温相关性不大,人类活动是影响植被NPP变化的重要因素,且对NPP有双重影响.  相似文献   

2.
李强 《安徽农业科学》2012,40(25):12596-12598,12693
利用西北地区植被数据(GIMMS-NDVI),以绿度变化率和偏相关分析法为基础,分析了西北地区不同生态分区NDVI的年际变化,并研究了植被覆盖变化对气候要素在空间上的响应。结果表明,西北地区的东部和西北部植被覆盖较好,研究区的西部盆地区和西南部的高寒区,植被覆盖较差;不同生态分区NDVI的变化与气温的相关性明显高于与降水的相关性,但降水是限制性因子,决定着ND-VI与降水相关的密切程度;水热条件较好的区域主要分布在西北地区中东部,NDVI与水热要素的相关性由草原、草甸、阔叶林向荒漠逐步减弱,极端干旱荒漠区相关性最小。  相似文献   

3.
叶面积指数(LAI),它是表征植被冠层结构的最基本参量之一,它影响着植被许多生理和物理过程,如光合、呼吸和蒸腾作用,以及碳循环和降水截留等。应用2003年遥感影像数据对合肥市城市绿量进行推算,采用植被指数作为统计模型的自变量,建立不同植被类型叶面积指数(LAI)与归一化植被指数(NDVI)的回归模型,探讨叶面积指数与归一化植被指数之间的相关性。结果表明,不同植被类型的LAI与NDVI的关系均可用逻辑斯蒂方程表达;不同植被类型的叶面积指数城市森林0.97农田0.62一般绿地0.61,合肥市总绿量2.9×108m2,植被分布区单位面积绿量2.2,不同类型对绿量的贡献率与其占有的土地面积比例不完全相符,应探求建立合理的绿化复层种植结构的具体方法,增加城市绿地的LAI。本研究也可用于研究周边地区相似植被的绿量。  相似文献   

4.
江西省植被NDVI变化及其对气候变化的响应   总被引:1,自引:0,他引:1  
利用MODIS数据插补GIMMS NDVI数据,基于S-G滤波法重构长时间序列的NDVI数据集,反演了江西省1982—2013年植被动态变化特征,并结合研究区及其周边25个气象站点的气温、降水、日照时数和相对湿度数据,分别从年际变化和月变化出发,分析植被NDVI动态变化及其与气候因子之间的关系。结果表明:江西省植被NDVI年际变化整体呈缓慢波动上升趋势,从空间尺度分析,得出21世纪初植被覆盖率20世纪90年代植被覆盖率20世纪80年代植被覆盖率,3个年代NDVI变化呈增加趋势,这与江西省近30年平均气温逐年上升、降水量和相对湿度逐年缓慢下降,整体呈暖干化的气候条件密不可分;日照时数及气温对江西植被NDVI年变化起着决定性作用。进一步分析植被与气候要素年变化相关性发现,NDVI与日照时数、气温的关系较之与降水、相对湿度的关系更为密切;植被与气候因子月变化分析表明日照时数对NDVI响应最为显著,气温次之,且两者皆有1个月、3个月的滞后效应。降水量与相对湿度对NDVI的响应相对不显著,且无滞后性。  相似文献   

5.
地形是影响森林植被分布与生长的重要地理因子,秦岭山地作为中国中部重要生态屏障区,其森林植被变化及对气候变化响应研究受到广泛关注。基于2000—2014年秦岭山地MODIS NDVI、DEM、气温和降水数据,利用线性趋势法和相关系数对森林植被变化及对气候响应的坡向、坡度影响进行了分析,研究结果:(1)秦岭山地森林植被以落叶阔叶林为主,占森林总面积的59.72%。按坡向划分,森林植被主要分布在半阳坡上,约占50%;按坡度划分,森林植被主要集中在斜坡和陡坡上,共占50%以上。(2)2000—2014年秦岭山地各森林植被NDVI均呈线性增加过程,在坡向和坡度上均表现为落叶阔叶灌木林线性增加速率最高、落叶阔叶林次之、常绿针叶林最低的特征,并且落叶阔叶灌木林、落叶阔叶林、常绿阔叶林的主体部分均呈显著的线性增加趋势,而针阔混交林、常绿针叶林的增加过程不显著。(3)秦岭山地森林植被与气温在不同坡向和坡度上均呈负相关关系,而与降水呈正相关关系,反映该区域热量条件充足,降水成为森林植被生长的主要限制因子。同时,在不同一坡向上,随着坡度的增加,气温、降水与森林植被的相关关系变化趋势较为一致。研究结果表明,秦岭山地地形条件对森林植被分布影响较大,而不同地形上水热条件对植被生长发育影响较小。  相似文献   

6.
叶面积指数(LAI)是气候研究和生态研究中重要的植被冠层结构参数,遥感技术为快速获取大面积叶面积指数提供了有效途径。大兴安岭地区是我国重要的生态功能区,本文以大兴安岭为研究区域,根据森林林分特征,采用基于物理过程的4-Scale几何光学模型,利用多角度MISR遥感数据反演该区域叶面积指数数据。几何光学模型特点在于参数具有物理意义,考虑地面反射的热点效应,模型反演过程不依赖于样本数据适用于大区域反演研究,MISR数据提供同一区域多角度遥感数据,有效解决了单一观测角度植被指数和叶面积指数函数关系饱和点低的问题。由于地面验证数据空间尺度无法满足MISR数据的空间分辨率,本文采用TM数据对样地实测叶面积指数数据进行尺度转换,针对不用坡向叶面积指数空间异质性进行分析,讨论不同空间分辨率验证数据的合理性,研究表明大兴安岭区域使用600m空间分辨率验证数据对MISR数据反演结果检验最优,该分辨率下叶面积指数变化随空间尺度变化趋于稳定,并较好地避免了2种遥感数据几何配准带来的误差。结果表明:4-Scale几何光学模型适用于我国大兴安岭地区森林叶面积指数反演,实验中MISR数据反演叶面积指数的平均绝对误差为25.6%、均方根误差为0.622。本研究为大兴安岭地区叶面积指数大区域快速定量反演提供了研究基础。   相似文献   

7.
利用祁连山北坡5类天然草地调查数据和同期的气象资料,分析其地上部数量特征及其与环境因子的关系.结果表明,5类草地的地上生物量、植被盖度均存在显著差异(P<0.05),表现为山地草甸>山地草甸草原>山地草原>高寒草原>山地荒漠草原;各草地群落地上生物量、高度和盖度的季节变化均呈单峰型,且峰值均出现在8月下旬;地上生物量与植被盖度显著相关(P<0.05),与群落高度(除山地草甸外)极显著相关(P<0.01),说明地上生物量随植被盖度和高度的增加而增大;各草地群落高度在达到最大值之前,均基本符合Logistic生长模型(P>0.01);地上生物量与同期水热因子的相关性均不显著(P>0.05),各草地群落高度和植被盖度对水热因子的敏感性存在差异.  相似文献   

8.
对水稻微分光谱和植被指数的探讨   总被引:3,自引:0,他引:3  
通过不同供氮水平的田间试验,分析了微分光谱对消除水稻冠层光谱的背景影响和植被指数在农学参数测定中的作用。结果表明:由微分光谱所得的红边位置、红边斜率与盖度、叶面积指数及供氮水平之间有一定的相关性;水稻多光谱植被指数RVI、NDVI与叶面积指数LAI及其地上部生物量之间有极显著相关性;高光谱植被指数及其变量与植被盖度、供氮水平之间存在相关性。这些表明,用微分光谱技术与植被指数方法监测水稻的田间供氮水平和长势似乎是可行的。  相似文献   

9.
火灾是影响森林生态系统过程的重要干扰之一,其对森林生态系统内各生态因子的响应各不相同.由于植被状况及生态环境的不同,森林火灾的时空分布特征在中国不同植被气候类型内表现不同,根据植被气候类型分类系统,将中国主要森林火灾地区划分为4个区域:东北(冷温带松林)、华北(落叶阔叶林)、东南(常绿阔叶林)和西南(热带雨林),应用遥感监测数据和地面环境数据,以时空变量、生态因子(植被生长变化指数、湿度等)为可选自变量,应用半参数化Logistic回归模型,就森林火险对不同生态影响因子的响应规律进行了分析,建立了基于生态因子的着火概率模型和大火蔓延概率模型,通过模拟及实际数据散点图、火险概率图,评估了模型应用价值.结果表明,土壤湿度及植被含水量在落叶阔叶林、常绿阔叶林、热带雨林地区对着火概率影响显著.在4个植被气候区内,土壤及凋落物湿度对大火蔓延的作用较小.在冷温带松林、落叶阔叶林、常绿阔叶林地区,植被生长的年内变化对火灾发生的影响显著,在常绿阔叶林地区,年内植被生长变化对大火蔓延的作用较小.森林火险概率与各生态因子的相关关系主要呈现出非线性.不同植被气候区内,火险概率受不同生态因子组合的影响,这与不同区域的植被状况及生态环境不同有关.在不同植被气候类型,应用时空变量、生态因子建立半参数化logistic回归模型,进行着火概率和大火蔓延概率的模拟具有可行性和实际应用能力.为进一步分析森林生态系统与火灾之间的动态关系、展开生态系统火灾干扰研究提供了理论基础.  相似文献   

10.
刘惠民  孙小东  汪健钢  姚维霞  史小津 《安徽农业科学》2010,38(27):15161-15162,15177
地表覆被变化能改变地表能量平衡和水文循环,土地利用/覆盖变化的气候和环境效应已受到广泛关注。笔者对20年来内蒙草地退化对区域气候影响研究方面的进展进行了分析总结。50年来在人文和自然因子驱动下内蒙草地严重退化,草地产量下降,植被覆盖度减小,沙化面积增加。全球气候模式和区域气候模式荒漠化数值试验结果表明,内蒙草地退化可使该地区夏季降水减小,气温升高,加剧了干旱化。草地退化气候影响机制是植被退化使得植被覆盖度和叶面积指数减少,陆面参数变化引起了水分循环和能量收支的变化并进一步影响大气环流的结构。  相似文献   

11.
基于MODIS的陕西省叶面积指数时空变化特征分析   总被引:1,自引:0,他引:1  
叶面积指数(LAI)作为表征植被冠层的重要参数,在定量分析陆地生态系统能量交换中具重要意义。利用MODIS叶面积指数产品,结合地表覆盖分类数据,对2001-2014年陕西省LAI进行了监测。结果表明:1)陕西省LAI最大值平均总体呈波动中上升趋势,年内变化呈现明显的季节差异。2)陕北地区LAI上升趋势明显,年际波动较大,渭北塬区以及陕南东部部分区域LAI呈上升趋势,但年际间变化不大,其他区域LAI年际间变化趋势和波动均不明显。3)陕西省范围内典型植被类型LAI最大值平均年际变化均呈现上升趋势,但年内变化曲线各不相同。退耕还林、植树造林等生态工程是陕西省LAI上升的主要原因,气候因素是LAI产生波动的直接原因。反映了陕西省植被群体结构空间分布以及变化特征,为进一步陆地生态系统研究提供了重要参数。  相似文献   

12.
2015-2016年对黑河市九三管理局30年气象要素及大豆品种黑河43在覆膜、不同密度等级和化控处理下全生育期产量和鼓粒期的冠层结构、受光量和光分布特征进行测量分析。两年实验结果表明:2015年降雨较多,产量增长;2016年7~8月降雨量极少,干旱胁迫严重影响植株生长发育,叶面积指数小、受光量小,产量减产;光在冠层内分布呈线性变化,主要集中在大豆冠层顶部;单位土地面积受光量与单位叶面积受光量、单株叶片数、叶面积指数、单叶面积均呈显著正相关关系,说明冠层结构是影响冠层受光量的主要因素,叶面积指数越大,单叶面积越大,单位土地面积受光量越多,大豆百粒重及产量均与单位叶面积受光量呈正相关关系,与单位土地面积受光量呈显著正相关关系,表示在黑河地区大豆受光量对大豆生长发育和产量增长具有重要影响;覆膜及D2密度(48万粒/hm2)处理下受光量最高,产量最高。因此增密与覆膜结合,调整植株冠层结构,保证植株生长发育,提高叶面积指数,充分利用当地光温水气候资源是进一步提高单产的途径。  相似文献   

13.
冬小麦遥感估产多种模型研究   总被引:20,自引:0,他引:20  
综合冬小麦地面光谱资料及相应的农学参数资料,NOAA/AVHRR 资料,历年各县冬小麦单产、播种面积、总产资料,历年新疆各站气象资料,监测点历年冬小麦发育期、密度、产量分析等资料,证明地面光谱植被指数与冬小麦密度、生物量、叶面积指数关系密切,从而建立了密度与生物量的光谱监测模型,进而建立了北疆试验区各层冬小麦种植面积估算和产量预报卫星遥感模型,辅以冬小麦产量农业气象预报模型、农学模型及模拟模型,自1994 年投入应用以来的结果表明,这套模型预报精度高、效果很好  相似文献   

14.
毛乌素沙地植被物候动态及其对气象因子变化的响应   总被引:3,自引:0,他引:3  
目的监测沙区区域植被物候,并确定植被物候与气候要素的关系,对理解沙区生态系统对气候变化的动态响应至关重要。方法本研究利用1982年1月至2015年12月的归一化差值植被指数(NDVI)时间序列数据,通过高阶曲线拟合的方法提取毛乌素沙地植被物候,包括生长季开始日期、结束日期和长度,分析其时间变化和空间特征,并利用偏相关性分析法确定其与气象因子(气温和降水量)的关系。结果毛乌素沙地植被生长季开始日期集中在第96~144天,生长季结束日期集中于第280~300天,生长季长度介于135~195d。从东到西生长季开始日期逐渐推迟,生长季长度逐渐缩短,生长季结束日期没有明显变化。在过去34年中,毛乌素沙地植被生长季开始日期和长度分别呈现显著提前和延长的趋势,分别为0.54和0.94d/a,生长季结束日期呈现推迟趋势,但该趋势并不显著。毛乌素沙地植被的生长季开始日期主要受2—4月的平均气温影响,结束日期主要受8—10月的累计降水量的影响。结论毛乌素沙地植被物候特征发生了明显变化,主要体现在生长季的提前和延长,这对该区域植被恢复与荒漠化的逆转具有一定的促进作用。   相似文献   

15.
利用1971~2010年武当山风景区周边十堰、丹江口和房县3个气象观测站雷暴资料,通过数理统计、小波变换和M-K分析,讨论了武当山景区雷暴气候变化特征,结果表明4,0年雷暴日数总体变化呈减少趋势,每10年雷暴日数减少0.7d,全年雷暴天数达21.7 d;除12月无雷暴发生外,其余11个月均有雷暴发生,4~9月雷暴日数占全年的94.4%,其中7~8月占59.6%,属于强雷季节。武当山风景区雷暴地域分布南部多于北部,雷暴表现出显著的年际和年代际变化特征,存在6年的显著年际周期,同时还存在2~4年8、~10年的振荡周期。雷暴突变最为集中的时期是在20世纪80年代初。  相似文献   

16.
利用1971—2016年长沙市常规气象资料,计算综合气象干旱指数,分析长沙地区干旱的时空分布特征及气象成因,并利用2003—2015年森林火灾资料进一步研究干旱对森林火灾的影响。结果表明,近46年来长沙地区干旱频率有所下降,干旱的年代际变化明显,呈三峰型。最长干旱持续天数和干旱总日数的年变化对应较好,长沙、浏阳、宁乡3站年际变化基本一致,且3站干旱分级特征具有较高的空间一致性。长沙地区以夏秋干旱最为常见,持续时间最长,最主要的气象原因为大气环流的影响。干旱情况下,森林等植被含水率下降,下降到一定程度,森林火灾容易发生。最长干旱持续日数和森林火灾发生次数、受灾面积的相关系数超过0.05信度水平。2007年的火灾情况分析表明,森林火灾多发生在干旱条件下的连晴时段内。  相似文献   

17.
以沈阳地区为研究实例,利用NASA对地观测系统EOS系列卫星遥感影像,经过了滤波处理MODIS归一化植被指数(NDVI)数据,对研究地区的旱田作物进行不间断监测.计算出2003 ~ 2007年的年平均NDVI,分析出NDVI年际变化特征、作物生育期内的NDVI变化规律,并找出产量与植被指数变化关系.结果表明,沈阳地区旱田植被指数的年际间差异明显,旱田作物生育进程与作物生育期内NDVI变化规律大致吻合,这表明作物产量与遥感植被指数间存在较好的相关.因此,根据同期地面作物产量调查数据与MODIS遥感数据,采用一次线性拟合法建立回归方程,简单分析出沈阳地区旱田作物产量与NDVI变化关系.  相似文献   

18.
张磊  聂志刚 《农学学报》2023,13(3):21-29
免耕覆盖中补灌量和秸秆覆盖量变化对叶片生长有较大影响,以甘肃省定西市安定区1979—2019年历史气象数据为基础,运用APSIM模型对补灌量与覆盖量耦合变化时旱地春小麦的叶面积指数进行模拟,并采用方差分析、二次多项式回归、单因素分析等方法,研究补灌量和覆盖量对旱地春小麦叶面积的影响机制。结果表明:在试验设计范围内,旱地春小麦叶面积指数随着补灌量变化在分蘖—拔节期呈开口向下的二次抛物线先增后减变化,补灌量在252.09 mm时春小麦叶面积指数出现最大值为1.83,其他各个时期均呈开口向上的二次抛物线递增变化。随着秸秆覆盖量变化,叶面积指数在出苗—分蘖期,呈开口向下的二次抛物线先增后减变化,试验设计范围内秸秆覆盖量为2397.09 kg/hm2时春小麦叶面积指数出现最大值为0.59,分蘖—拔节期呈开口向下的二次抛物线递增变化;其他各个时期均呈开口向上的二次抛物线递增变化。相同阶段下,补灌量每增加50 mm,春小麦叶面积指数最大增幅13.95%;秸秆覆盖量每增加1000 kg/hm2,春小麦叶面积指数最大增幅3.7%。补灌量对春小麦叶面积指数的影响程度远大于秸秆覆盖量的影响。免耕覆盖中,合理的进行秸秆覆盖和补灌能够保持土壤中的水分,有利于旱地春小麦叶片生长。  相似文献   

19.
选取成都市城市公园的40个植物群落为研究对象,记录各植物群落中每种植物的物种名、树高、冠幅、胸径、盖度、叶面积指数等相关数据,根据盖度及叶面积指数计算出绿量。通过分析成都市城市公园典型植物群落的结构特征及其与绿量的相关性,研究影响植物群落绿量变化的结构特征因子。结果表明:成都市城市公园主要群落结构模式是双层乔+灌+草;乔木层、灌木层、草本层3个层次的平均Shannon-winner指数分别为0.69、1.03、0.76,平均物种丰富度均在4左右;群落绿量与优势种的胸径极显著正相关,与优势种的高度、冠幅显著正相关。  相似文献   

20.
为研究中国东北地区植被覆盖变化特征,基于MODIS归一化植被指数(INDV)月合成数据,利用双组分线性混合模型估算中国东北地区2007-2010年植被覆盖度(fc),并对4年间植被覆盖度时空变化规律进行分析.结果表明:(1)中国东北地区植被覆盖度整体处于较高水平,植被覆盖度平均在70%以上,并呈现出东高西低的分布特征;(2)2007-2011年,中国东北地区年最大植被覆盖度总体较稳定并有一定增长趋势,以稳定和轻微恢复为主.稳定及轻微恢复的面积占总面积的90%以上,出现了不同程度退化的面积在10%以下,主要出现在内蒙古自治区东北部以及中部,其原因与该地过度放牧等有关;(3)中国东北地区2007-2010的植被覆盖度变化波动不大,相对稳定;(4)中国东北地区2007-2010年间植被覆盖状况呈良性发展趋势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号