首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
不同温度制备香根草生物炭对Cd2+的吸附特性与机制   总被引:5,自引:4,他引:1  
为探讨香根草生物炭对水溶液中Cd2+的吸附特性及机制,通过元素分析、BET-N2、Zeta电位、SEM-EDS、FTIR等分析手段对不同热解温度(300、500℃和700℃)下制备的香根草生物炭特性进行表征,并研究三种生物炭(BC300、BC500和BC700)在不同初始Cd2+浓度和吸附时间下的吸附行为。结果表明,随着温度升高,生物炭产率下降,灰分、pH和Zeta负电荷量上升;比表面积和孔体积增大,其中BC700的比表面积为227.04 m2·g~(-1),比原材料增大67.8倍。三种生物炭的吸附过程均符合Langmuir和Freundlich模型,而Freundlich拟合度相对较高(R2均大于0.98),最大吸附量顺序依次为BC700(92.65 mg·g~(-1))BC500(80.17 mg·g~(-1))BC300(76.29 mg·g~(-1))。当初始Cd2+浓度为20 mg·L~(-1)时,吸附平衡时间顺序为BC700(80 min)BC500(180 min)BC300(240 min),均符合准二级动力学模型(R2均大于0.98),以化学吸附为主。对比吸附前后的FTIR谱图,主要有-OH、C=O、C=C、C-O等官能团参与生物炭的吸附过程。结合SEM-EDS的结果分析,生物炭主要是通过表面静电吸附和络合作用去除溶液中Cd2+。三种生物炭中,BC700吸附性能最佳,原因可能是其具有较大的比表面积、较多的负电荷量和较多的官能团。  相似文献   

2.
为了更好地处理废水中的Sb(Ⅴ),利用三价铝和高锰酸钾对生物炭进行改性,并使用比表面积(BET法)分析、扫描电子显微镜(SEM)和傅里叶变换红外光谱(FTIR)表征改性前后的生物炭。通过对生物炭投加量、反应时间、Sb(Ⅴ)初始浓度、pH值进行研究,拟合分析试验数据,探究3种生物炭的吸附特性与吸附机理。结果表明,25℃下,固液比为1 g∶400 mL,反应时间为4 h,pH值为2时,原炭(BC)、Al~(3+)改性的生物炭(Al-BC)和高锰酸钾改性生物炭(KMnO_4-BC)对Sb(Ⅴ)的最大吸附量分别为4.41、10.48、30.06 mg/g,三者吸附量均整体随pH值的增大而逐渐减小。3种生物炭等温吸附曲线符合Langmuir等温模型,BC和KMnO_4-BC吸附动力学过程遵循拟二级动力学方程,Al-BC吸附符合拟一级动力学方程。生物炭吸附过程为以物理吸附行为主的物理-化学复合过程。BET比表面积分析结果表明,Al-BC比表面积及总孔体积最大,KMnO_4-BC粒径较小且其表面附着的晶体提高其吸附能力。FTIR结果表明,改性前后生物炭表面官能团差别不大。  相似文献   

3.
生物炭对Cu2+的吸附特性及其影响因素   总被引:2,自引:0,他引:2  
[目的]研究生物炭对溶液中Cu2+的吸附特性及其影响因素。[方法]采用玉米秸在不同温度(200、350、700℃)下制备的生物炭(BC200、BC350、BC700)吸附Cu2+,探讨在不同初始浓度、吸附时间、pH、Zn2+强度条件下对Cu2+的吸附特性。[结果]随着热解温度的升高,生物炭的pH和灰分含量增加。BC350具有最大的CEC和有机碳含量。3种生物炭对Cu2+的吸附能力大小为:BC350〉BC700〉BC200;拟合得到的BC200、BC350、BC700的最大吸附量分别为17.1、30.6、27.2mg/g。可以用准一级动力学模型较好地描述吸附动力学结果,BC200、BC350、BC700拟合得到的平衡吸附量与实测值接近。生物炭的铜吸附量随着溶液初始pH的增加而增大;较高的陪伴Zn2+浓度可以显著降低生物炭对Cu2+的吸附。[结论]该研究可为生物炭在环境科学中合理应用提供科学依据。  相似文献   

4.
分别在300、500℃和700℃下制备水稻、小麦和玉米秸秆生物炭,对比以不同类型生物炭为载体制备的炭基硫酸盐还原菌(SRB)对Cr(Ⅵ)的吸附效应,筛选出吸附效果最佳的炭基菌剂。采用扫描电镜、傅里叶红外光谱和比表面积测试仪对生物炭进行表征分析,研究了溶液pH、吸附时间、生物炭添加量和Cr(Ⅵ)初始浓度对炭基SRB吸附Cr(Ⅵ)的影响,并结合吸附动力学和等温吸附模型探讨其对Cr(Ⅵ)的吸附过程及作用机制。结果表明:以700℃限氧热解小麦秸秆(XM700)为载体制备的炭基SRB(IBXM700)对Cr(Ⅵ)的吸附效果最佳,其最佳吸附条件为pH=5、生物炭添加量0.6 g·100 mL~(-1)、吸附时间24 h、Cr(Ⅵ)的初始浓度100 mg·L~(-1);IBXM700对Cr(Ⅵ)的吸附更符合拟一级动力学,以离子交换和表面物理吸附为主,以化学吸附作用为辅,其等温吸附符合Langmuir模型,属于单分子层吸附;SRB能还原SO_4~(2-)为S~(2-),或分泌还原酶将Cr(Ⅵ)还原为Cr(Ⅲ),从而达到去除目的。研究表明,IBXM700去除Cr(Ⅵ)的主要机制为吸附作用与还原作用。  相似文献   

5.
玉米秸秆生物炭对Cd2+的吸附特性及影响因素   总被引:7,自引:0,他引:7  
以玉米秸秆生物炭为实验材料,研究了生物炭吸附重金属Cd2+的性能,分析了吸附温度、吸附时间、初始pH值以及生物炭粒径对吸附的影响,并对吸附前后生物炭样品进行傅里叶变换红外光谱分析(FITR)、X-射线衍射(XRD)和X-射线光电子能谱(XPS)表征以分析吸附机理。结果表明:玉米秸秆生物炭对Cd2+的吸附可用Langmuir等温方程较好地拟合,在不同温度下其饱和吸附量分别为18.49 mg·g-1(288.15 K)、23.51 mg·g-1(298.15 K)、23.59 mg·g-1(308.15 K)和24.43 mg·g-1(318.15 K),吸附动力学过程可以由准二级动力学方程很好地拟合,约40 min即达平衡,pH值为5时吸附量最大,生物炭粒径对吸附无明显影响。结构表征表明,生物炭对Cd2+的吸附机理主要为表面羟基(-C-OH)和羰基(-C=O)与Cd2+发生络合化学反应作用。  相似文献   

6.
玉米秸秆生物炭对Cd(Ⅱ)的吸附机理研究   总被引:43,自引:20,他引:23  
以玉米秸秆为原料,在350℃和700℃热解温度下分别制备了两种生物炭(BC350和BC700),并对其理化性质进行了表征.在700℃下制备的生物炭芳构化程度更高,疏水性更强,比表面积更大,孔结构发育更加完全.研究Cd(Ⅱ)在两种生物炭上的吸附发现,Two-site Langmuir吸附等温模型比One-site Langmuir吸附等温模型能更好描述Cd(Ⅱ)在生物炭表面的吸附.BC700对Cd(Ⅱ)的吸附容量大于BC350,解吸率远小于BC350,吸附效果更好;离子交换和阳离子-π作用两种吸附机理同时存在并共同作用,前者分别占BC350和BC700总吸附容量的13.7%和1.1%,后者分别占86.3%和98.9%,阳离子-π作用是最主要的吸附机理.红外光谱FTIR分析表明,生物炭表面的含氧官能团和π共轭芳香结构分别提供不同机理的吸附位点.由于具有更多的离子交换位点,BC350对Cd(Ⅱ)吸附受pH影响较BC700更大.  相似文献   

7.
玉米秸秆生物炭对水中戊唑醇和稻瘟酰胺的吸附特性研究   总被引:1,自引:0,他引:1  
《山东农业科学》2019,(6):117-124
以农业废弃物玉米秸秆为材料,在300、500、700℃下采用限氧碳化法制备生物炭,并测定了生物炭的元素组成,利用扫描电镜(SEM)和红外光谱(FTIR)表征了生物炭的形貌结构特征,考察了生物炭对水中戊唑醇和稻瘟酰胺的吸附动力学和热力学特征,并评价了pH对生物炭吸附的影响。结果表明:随着碳化温度的升高,玉米秸秆生物炭C元素含量增大,表面微孔形变程度及粗糙程度增大,芳香族化合物增加,芳香化程度提高,对两种农药的吸附性增强。准二级动力学方程能更好地描述玉米秸秆生物炭对两种农药的吸附动力学过程,颗粒内扩散表明膜扩散和颗粒内扩散共同控制着生物炭对两种农药的吸附过程;Langmuir和Freundlich方程均可以较好地描述玉米秸秆生物炭对两种农药的吸附热力学过程,说明生物炭对两种农药的吸附同时存在物理吸附和化学吸附两种形式,但以化学吸附为主。吸附过程中焓变(ΔH~o)、熵变(ΔS~o)和吉布斯自由能变(ΔG~o)表明玉米秸秆生物炭对两种农药的吸附是自发的吸热过程。溶液pH值会对生物炭吸附两种农药产生较大影响,酸性条件下吸附率高,碱性条件下吸附率低。  相似文献   

8.
玉米秸秆生物炭对暗棕壤性质和氮磷吸附特性的影响   总被引:3,自引:0,他引:3  
玉米秸秆生物炭在增加土壤肥力、促进作物生长特别是在控制氮磷面源污染方面具有重要作用。以玉米秸秆为生物质材料,在450℃碳化温度下制备了玉米秸秆生物炭,并将玉米秸秆生物炭以不同比例与暗棕壤混合,玉米秸秆生物炭所占质量比分别为0,0.5%,1%,2%,培养30 d后进行土壤基本理化性质测定和对氮磷的模拟吸附试验。结果表明:添加玉米秸秆生物炭能够加深暗棕壤颜色,提高暗棕壤有机质、全氮、全磷以及有效氮、速效磷的含量。可用Lagergren准一级动力学方程拟合添加玉米秸秆生物炭暗棕壤对氮磷的吸附动力学过程;可用Langmuir方程拟合添加玉米秸秆生物炭暗棕壤对氮磷的吸附热力学过程。随着玉米秸秆生物炭添加量的增加,暗棕壤对氮磷的吸附速率常数增大,对氮磷的饱和吸附量增加,对氮磷的固定能力增强。  相似文献   

9.
四种有机物料对Pb2+的吸附特性   总被引:5,自引:3,他引:2  
为研究不同有机物料的性质特征以及对重金属离子的吸附能力,选用四种农林废弃物或其加工产物(锯末生物炭、玉米秸秆、鸡粪、食用菌菌渣),利用SEM、FTIR等方法对其形态和官能团进行表征,并通过对Pb~(2+)的批量吸附试验,考察了pH、时间、溶液初始浓度对吸附量的影响。结果表明,四种材料均能够有效吸附Pb~(2+),但吸附特性有一定差异。生物炭、秸秆、鸡粪最佳pH为5,且受pH影响较大;菌渣最佳pH为2,受pH影响不大。25℃、pH 5时四种材料均能较快地达到吸附平衡,且吸附量随时间的变化数据均符合准二级动力学模型,吸附量随初始浓度的变化数据均能较好地拟合Langmuir等温方程,其中生物炭的饱和吸附量远高于其他三种材料,达到411.52 mg·g~(-1),秸秆、鸡粪、菌渣的饱和吸附量分别为40.90、41.82、115.65 mg·g~(-1)。  相似文献   

10.
以南疆农业废弃物棉花秸秆为原料,采用限氧控温裂解法制备不同温度(200、400和600℃)下的棉花秸秆生物质炭(CSBC200、CSBC400和CSBC600),研究棉花秸秆生物质炭对重金属Pb(Ⅱ)的吸附性能及影响因素,探讨pH、温度、初始浓度和吸附剂投加量对棉花秸秆生物炭吸附Pb(Ⅱ)的影响。研究结果表明:随着热解温度的升高生物炭的pH、比表面积及芳香性增强;不同热解温度制备的棉花秸秆生物炭对Pb(Ⅱ)的快速吸附过程发生在2 h内,吸附在10 h以后逐渐达到平衡状态,准二级动力学吸附模型能较好地描述棉花秸秆生物炭对Pb(Ⅱ)的动力学吸附过程;不同热解温度制备的棉花秸秆生物炭对Pb(Ⅱ)的吸附能力不同CSBC600 CSBC400 CSBC200,且CSBC600远高于其他;CSBC400和CSBC600的吸附过程更符合Freundlich模型,吸附体系既有物理吸附又有化学吸附;棉花秸秆生物炭对Pb(Ⅱ)的吸附最佳pH为5. 00,其饱和吸附量随着体系温度的升高而增加,吸附是自发进行的吸热过程,溶液体系温度升高更有利于吸附的进行。  相似文献   

11.
氧化老化玉米秸秆生物炭吸附镉机理研究   总被引:1,自引:1,他引:0       下载免费PDF全文
为研究玉米秸秆生物炭在经过模拟自然界老化后对Cd2+的吸附响应,本文利用H2O2对玉米秸秆生物炭进行氧化老化1、2、3次,利用元素分析仪、扫描电镜、红外光谱及碳谱等分析方法,分析老化前后生物炭对Cd2+的吸附及响应机理。结果表明:玉米秸秆生物炭氧化老化过程中形成硅酸盐沉淀;经过H2O2老化后H/C、O/C和(O+N)/C的原子比逐渐升高,使得生物炭含氧官能团上升、芳香性减弱、极性增强;老化1次(OYM1)、2次(OYM2)、3次(OYM3)后玉米秸秆生物炭碱性元素逐步被释放,碱性元素较未氧化玉米秸秆生物炭(YM)分别降低了48.23%、95.04%、95.74%;不同处理生物炭对Cd2+的最大吸附量表现为: YM(12.42 mg·g-1) >OYM1(5.98 mg·g-1) >OYM3(3.88 mg·g-1) >OYM2(3.61 mg·g-1),说明老化作用抑制了其对Cd2+的吸附。在玉米秸秆生物炭长期利用过程中,生物炭的老化促进无机组分发挥作用,吸附性能减弱,在进行土壤及水污染修复时应合理使用。  相似文献   

12.
为改善稻壳炭对Cd2+的吸附能力,分别选用壳聚糖、硝酸铁与高锰酸钾对稻壳生物炭进行改性,成功制备了壳聚糖改性稻壳炭(C-BC)和铁锰改性稻壳炭(FM-BC),表征了各稻壳炭的基础理化性质,包括比表面积分析(BET)、傅里叶变换红外光谱(FTIR)、X射线衍射表征(XRD),进行了动力学吸附实验和等温吸附实验,并在不同pH和投加量条件下,研究了改性生物炭对Cd2+的吸附量和去除率。结果表明:两种改性方式均减小了稻壳炭的比表面积和总孔隙体积; FM-BC含有Mn-O、Fe-O的特征官能团,此外改性前后稻壳炭的官能团类型基本不变;两种改性方式均使稻壳炭产生了对应的晶体结构变化。两种改性炭对Cd2+动力学吸附特征均符合准二级动力学模型,颗粒内扩散模型均分为3个阶段,对Cd2+等温吸附特征均符合Langmuir模型; C-BC和FM-BC的最大吸附量分别为25.51 mg·g-1和16.25 mg·g-1,是BC (14.97 mg·g-1)的1.7倍和1.08倍。随着溶液pH增加,C-BC和FMBC的吸附量和去除率逐渐增加,且始终高于BC;随着投加量的增加,C-BC和FM-BC的Cd2+去除率逐渐增加,而吸附量逐渐降低。两种改性方式均能够在一定程度上提高稻壳炭对Cd2+的吸附能力,均以单分子层化学吸附占主导,C-BC的最大吸附量明显高于FM-BC,适度调整溶液pH和投加量可改善改性稻壳炭的Cd2+吸附效果。  相似文献   

13.
不同生物炭对氮的吸附性能   总被引:10,自引:3,他引:7  
为探究不同类型生物炭对氮的吸附性能,寻求最佳的氮素吸附材料,本文选择稻壳炭、山核桃壳炭和竹炭作为吸附剂,开展不同pH环境、反应时间、初始浓度及生物炭添加量条件下的吸附实验,研究生物炭对硝酸铵溶液中氮的最佳吸附条件,并对结果进行等温吸附拟合与吸附动力学研究。结果表明:3种生物炭对硝酸铵溶液中的氮均有一定的吸附效果,且pH环境、反应时间、初始浓度及生物炭添加量均影响生物炭对氮的吸附量。生物炭添加量为0.05 g时,在pH环境为9、吸附时间为3 h、初始浓度为100 mg·L-1的条件下,平衡吸附量达到最大,稻壳炭、山核桃壳炭和竹炭在此条件下的最大吸附量分别为23.79、13.00 mg·g~(-1)和17.60 mg·g~(-1),表明稻壳炭对氮的吸附效果最佳;Langmuir方程能更好地拟合3种生物炭对氮的等温吸附过程,表明生物炭对氮的吸附主要是单分子层吸附;准二级动力学模型能更好地描述3种生物炭吸附氮的动力学过程,表明生物炭对氮的吸附为化学吸附。综上说明,稻壳炭在最佳吸附条件下可吸附较多氮素,有望作为一种良好的吸附剂应用于土壤和水体氮素污染治理。  相似文献   

14.
本研究合成了稳定分散的纳米银(AgNPs)颗粒,并采用批量试验法研究了水稻壳生物炭(BC)、多壁碳纳米管(CNTs)和石墨烯(GP)3种碳基材料对AgNPs的吸附特性以及环境因素(离子强度、离子种类和电解质pH)对AgNPs吸附的影响。结果表明:AgNPs在碳基材料上的吸附过程符合准二级动力学模型,吸附速率受内扩散和其他过程共同控制,并且在240min内均能达到吸附平衡;与Freundlich模型相比,Langmuir模型能够更好地拟合AgNPs在碳基材料上的等温吸附过程,并且AgNPs在BC、CNTs和GP上的吸附量依次增大,分别达到了69.15、87.78、121.21mg·g~(-1);在试验离子强度(20~100mmol·L~(-1))下,改变Na+强度对碳基材料吸附AgNPs的能力没有显著改变,但Ca2+强度的升高却抑制了GP对AgNPs的吸附,AgNPs在碳基材料上的吸附量随着电解质pH的升高而降低;BC通过络合作用、离子交换作用、沉淀作用和静电作用吸附AgNPs,CNTs和GP主要利用静电作用和范德华力固定溶液中的AgNPs。这些结果有助于了解AgNPs在碳基材料上的吸附行为,并可为更好地评价和管理AgNPs在环境中的风险提供依据。  相似文献   

15.
猕猴桃木生物质炭对溶液中Cd2+、Pb2+的吸附及应用研究   总被引:2,自引:1,他引:1  
为探讨生物质炭对废水中重金属的吸附性能,以猕猴桃修剪枝为原料制备生物质炭,通过静态吸附法研究了其对复合溶液中Cd2+、Pb2+的吸附,探究了溶液初始浓度、吸附时间、pH值及生物质炭投加量对溶液中Cd2+、Pb2+吸附效果的影响,同时采用扫描电镜(SEM)和傅里叶红外光谱(FTIR)对吸附前后的生物质炭结构进行了表征,并讨论了其对养殖废水和垃圾渗滤液中Cd2+和Pb2+的吸附能力。结果表明:猕猴桃木生物质炭具有多孔结构和多种表面官能团。Cd2+、Pb2+的最优吸附条件是pH为4~6,120 min吸附达到平衡,最佳投加量分别为4.0、3.0 g·L-1,最大吸附量分别为9.35、65.9 mg·g-1。生物质炭对Cd2+、Pb2+的吸附过程用准二级动力学方程能较好地描述;在25℃条件下,生物质炭对Cd2+的吸附用Langmuir方程能更好地描述,其理论最大吸附量达13.1 mg·g-1,而生物质炭对Pb2+的吸附过程用Freundlich方程能更好地描述。猕猴桃木生物质炭可作为处理轻度重金属复合污染废水的吸附剂。  相似文献   

16.
为比较3种新型改性生物炭对溶液中镉(Cd)的吸附行为,以玉米秸秆生物炭为原料,制备巯基改性生物炭(S-BC)、铁改性生物炭(Fe-BC)和氮掺杂生物炭(N-BC),分析改性前后生物炭的元素组成、比表面积、表面官能团等性质的变化,通过系统的吸附试验,比较3种改性生物炭对Cd的吸附性能和作用机理。结果表明:与未改性生物炭(BC)相比,N-BC和Fe-BC比表面积分别增加了6.3和9.0倍,总孔体积分别增加了2.68和4.08倍。S-BC因改性后表面光滑,使得生物炭比表面积减小,但其表面官能团变化明显,S-BC在2 977 cm-1处出现新的吸收峰对应脂肪族(C-H)的伸缩振动,而且在1 089 cm-1、1 044 cm-1位置出现双特征吸收峰。3种生物炭对Cd2+的吸附主要为化学吸附过程为主,且Langmuir吸附等温线模型所拟合的热力学吸附优于Freundlich吸附等温模型,推测N-BC、Fe-BC、S-BC 3种生物炭对Cd2+的吸附过程为单分子层物理吸附。通过Langmuir模型计算可以得到几种生物炭对Cd2+最大吸附量表现为Fe-BC (69.11 mg·g-1) > N-BC (61.92 mg·g-1) > S-BC (53.85 mg·g-1) > BC (40.34 mg·g-1)。  相似文献   

17.
纳米羟基磷灰石改性生物炭对铜的吸附性能研究   总被引:1,自引:1,他引:0  
为了提高生物炭对重金属铜的吸附能力,选取小麦秸秆作为原料,将不同比例纳米羟基磷灰石与秸秆混合均匀,在600℃高温限氧条件下制备了羟基磷灰石改性生物炭材料,比较了生物炭和生物炭改性材料对铜的吸附特性,同时分析了两者间的表面特征等。结果表明:热重分析显示,生物炭表面附着纳米羟基磷灰石可以提高生物炭的热稳定性;扫描电子显微镜分析显示,纳米羟基磷灰石可以较为均匀地附着在生物炭表面,但同时会伴随不同程度的聚集现象;接触角测试结果显示,生物炭表面附着纳米羟基磷灰石可降低其疏水性;生物炭和生物炭改性材料对铜的吸附符合伪二级动力学模型,生物炭改性材料可使铜的吸附速率提高7.69%~130.77%;生物炭和生物炭改性材料对不同浓度的铜吸附符合Langmuir等温吸附模型,对铜的最大吸附量分别为32.65 mg·g~(-1)和57.01 mg·g~(-1)。  相似文献   

18.
为提高生物质炭对重金属的吸附性能,以棕榈树纤维为原材料制备了棕榈树纤维生物质炭(NPB)、KOH活化正交优化生物质炭(PB)及负载改性纳米二氧化硅生物质炭(PBS)。分别采用红外光谱、扫描电镜等对制备的生物质炭进行表征,比较了其碘吸附值大小及对水中Pb~(2+)的吸附效果,并分析了吸附动力学和等温吸附特性。结果表明:PB、PBS较NPB增加了表面吸附位点,比表面积、总孔体积及最大吸附容量显著增加,PB吸附Pb~(2+)的过程符合准二级动力学模型,PBS吸附Pb~(2+)的过程符合准一级动力学模型,PB、PBS对Pb~(2+)的最大吸附容量分别为110.89、151.63 mg·g~(-1);通过比较Langmuir和Freundlich模型拟合方程相关参数可知,PB、PBS对Pb~(2+)的吸附过程为匀质、单双层同时进行,更加符合Langmuir方程。研究表明,PBS对Pb~(2+)的吸附性能最好(较PB吸附性能提升了1.37倍),负载改性效果显著,具有良好的应用潜力。  相似文献   

19.
载镁香蕉秆基生物炭对氮磷的吸附性能研究   总被引:3,自引:0,他引:3  
以香蕉秸秆为原料,氯化镁(MgCl2)为改性剂,通过限氧热解法(温度673 K)制备生物质炭。利用扫描电镜、傅里叶红外光谱、X射线衍射等技术分析了镁改性生物质炭对氮、磷的吸附机理。结果表明,通过镁改性,生物质炭对氮、磷的吸附量得到显著提高,最大吸附量分别达13.80、18.21 mg·g-1;对氮、磷的等温吸附曲线均符合Langmuir曲线,为单层吸附,吸附机理主要以化学吸附为主;吸附平衡时间约为150 min,氨氮和磷的吸附动力学均符合准二级动力学拟合方程,吸附过程受多步骤控制。该载镁生物质炭可以作为潜在吸附剂去除废水和富营养化水体中过量的氮、磷。  相似文献   

20.
为探讨纳米Fe3O4负载联合硝酸改性椰壳炭对Pb2+、Cd2+单一及复合溶液的吸附特性,通过静态吸附实验,针对吸附剂的表面特性、投加量、溶液初始pH、吸附时间、重金属初始浓度等影响因素进行了探讨,应用等温吸附模型及吸附动力学模型对吸附特性进行了研究。结果表明,纳米Fe3O4负载酸改性炭比表面积较未改性椰壳炭增加了221.03 m2·g-1,表面含氧官能团如O-H、C=O、C-O-C增加,芳香性增强,等电点提高至5.68。从经济效率角度考虑5 g·L-1为合理吸附剂用量,pH为5.0时,吸附效果最好,吸附在4 h达到平衡。准二级动力学模型对吸附的拟合度更高,吸附主要是化学吸附,吸附由快速外扩散和颗粒内扩散共同作用,Pb2+、Cd2+的吸附分别更符合Langmuir和Freundlich等温吸附模型。纳米Fe3O4负载酸改性椰壳炭对Pb2+、Cd2+的最大吸附量(Qm)分别达42.54 mg·g-1和25.79 mg·g-1,为未改性椰壳炭的1.87倍和2.23倍,复合溶液中Pb2+、Cd2+Qm分别为单一溶液的65.16%和54.21%,这揭示了离子共存条件下的吸附竞争现象。研究表明,纳米Fe3O4负载联合硝酸改性提高了椰壳炭对Pb2+、Cd2+的吸附能力,且Pb2+的吸附性能及吸附竞争性优于Cd2+。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号