首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
不同季节凤丹光合特性的初步研究   总被引:2,自引:0,他引:2  
在盆栽条件下研究了5年生牡丹品种凤丹的光合特性,试验采用美国LI-COR公司制造的LI-6400便携式光合仪测定系统,对盆栽凤丹的光合特性进行了初步研究。结果表明,凤丹叶片日变化Pn呈现不对称的双峰曲线,光合速率与蒸腾速率、气孔导度之间呈正相关。凤丹在春季、夏季最高峰分别出现在10:30和8:30左右,次高峰均出现在16:30左右,午间有明显的"午休"现象,且持续的时间较长,根据光响应曲线可以得出凤丹叶片的光饱和点1423.98μmol·m~(-2)·s~(-1)(春季)和1920.90μmol·m~(-2)·s~(-1)(夏季),光补偿点为25.59μmol·m~(-2)·s~(-1)(春季)和19.21μmol·m~(-2)·s~(-1)(夏季)。  相似文献   

2.
影响人参叶片光合速率对CO2水平响应的因素   总被引:1,自引:0,他引:1  
研究了不同温度、光照强度和O2水平下人参叶片光合速率对CO2水平的响应特性.结果表明人参叶片光合作用CO2补偿点为36.6 μmol·mol-1.CO2在36.6~500μmol·mol-1范围内,随CO2增加光合速率快速提高,羧化效率迅速下降;当CO2超过500μmol·mol-1时,随CO2的增加光合速率缓慢提高,羧化效率缓慢下降.低温和低光照强度均可成为人参叶片光合速率的限制因子.25 d叶龄的人参叶片光合速率对CO2水平的响应较敏感,当CO2从150μmol·mol-1增加到1800μmol·mol-1时,光合速率提高216.7%(3.9μmol·m-2·s-1);63 d叶龄的人参叶片光合速率对CO2水平的响应不敏感.无O2时人参叶片的光合速率显著高于正常O2含量时的光合速率,但这种差异随CO2量的增加而逐渐缩小.  相似文献   

3.
高州油茶光合生理特性   总被引:2,自引:0,他引:2  
【目的】阐明高州油茶光合生理特征,为优良种质资源选择及高效栽培管理提供理论基础和技术指导.【方法】利用LI-6400便携式光合仪,测定高州油茶主要光合生理指标.【结果和结论】高州油茶净光合速率的日变化均呈"双峰型"曲线,其光饱和点为1 417μmol·m~(-2)·s~(-1),光补偿点为18.92μmol·m~(-2)·s~(-1),最大净光合速率为12.58μmol·m~(-2)·s~(-1).蒸腾速率各季度变化均呈"单峰型"曲线,最高值为3.65 mmol·m~(-2)·s~(~(-1)).胞间CO_2浓度日变化趋势为"U"型曲线.水分利用效率日变化均呈"降-升-降"的趋势.气孔导度日变化曲线有"单峰型"和"双峰型"2种,其中7、9、11月和次年1月为"双峰型",次年3月为"单峰型".光合有效辐射、空气温度、大气CO_2浓度,蒸腾速率和气孔导度与光合速率的相关性最大.  相似文献   

4.
用Li-6400XT便携式光合仪对高黎贡山南段3种生境(荒草地、林下、苗圃)中生长的国家Ⅰ级保护植物长蕊木兰幼苗进行连续3d的光合特性测定,为其科学保护提供一定依据。结果显示:(1)3种生境下的幼苗净光合速率、蒸腾速率、气孔导度日变化未见"午休"现象,9:00—11:00所测值为1 d中最高;水分利用率无明显变化规律;胞间CO_2摩尔分数与其他光合参数日变化相反。(2)相关性分析显示,光合有效辐射、相对湿度、空气温度、大气CO_2摩尔分数对幼苗净光合速率的影响为,荒草地幼苗从大到小依次是光合有效辐射、相对湿度、空气温度、大气CO_2摩尔分数;林下幼苗从大到小依次是光合有效辐射、空气温度、相对湿度、大气CO_2摩尔分数;苗圃幼苗从大到小依次是光合有效辐射、相对湿度、大气CO_2摩尔分数、空气温度。(3)荒草地幼苗光饱和点为(1 284.96±48.231)μmol·m~(-2)·s~(-1)、林下幼苗(1 052.31±24.746)μmol·m~(-2)·s~(-1),苗圃幼苗(1 255.62±52.374)μmol·m~(-2)·s~(-1);光补偿点分别为(28.65±1.094)、(17.09±0.828)、(6.75±0.317)μmol·m~(-2)·s~(-1),饱和点后,三者均出现抑制现象。(4)CO_2响应曲线差别较大,其中荒草地幼苗最高,三者CO_2饱和点不明显,补偿点分别为荒草地幼苗(103.75±6.826)μmol·m~(-2)·s~(-1)、林下(102.67±5.081)μmol·m~(-2)·s~(-1)、苗圃(130.1±2.022)μmol·m~(-2)·s~(-1),说明不同生境下的幼苗光合特性存在细微差别,苗圃环境下光合特性最强。  相似文献   

5.
不同种源山桐子光合特性分析   总被引:1,自引:0,他引:1  
为了研究山桐子不同种源的光合特性,以张家界、成都、广元和东京4个种源山桐子为研究对象,利用LCpro-SD便携式光合仪测定分析不同种源不同月份的净光合速率(Pn)、胞间CO_2摩尔分数(Ci)、气孔导度(Gs)、蒸腾速率(Tr)的变化、光响应曲线、CO_2响应曲线。结果表明,张家界种源在6月的Pn值最高,为12.66μmol·m~(-2)·s~(-1),广元种源5月Pn值最高,为9.41μmol·m~(-2)·s~(-1),东京和成都种源7月的Pn值最高,分别为9.36和12.65μmol·m~(-2)·s~(-1),4个种源Pn均在10月最低。4个种源山桐子的光饱和点(LSP)最大值均出现在7月,LSP为939.26~1 464.23μmol·m~(-2)·s~(-1),光补偿点(LCP)为11.38~87.76μmol·m~(-2)·s~(-1),张家界种源对光的适应范围最广,东京种源的最大净光合速率(Pn)最高。4个种源山桐子的CO_2饱和点为1 385.36~1 527.29μmol·m~(-2)·s~(-1),CO_2补偿点为19.12~146.42μmol·m~(-2)·s~(-1),4个种源山桐子利用低摩尔分数CO_2的能力均相对较差,而利用高摩尔分数CO_2的能力相对较强。不同种源不同时间的光合特性可以为种源选择和栽培管理方式提供参考。  相似文献   

6.
光照强度对冬小麦旗叶光合生理特性的影响   总被引:1,自引:0,他引:1  
为建立冬小麦相应的光合作用模型提供数据支持,在20℃、不同光强梯度下,测定了冬小麦旗叶净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、胞间CO2浓度(Ci)等生理指标,研究自然条件下抽穗期冬小麦旗叶光合生理特性的变化规律。结果表明,光合速率随光照强度增加而增加并呈正相关(p<0.05),在光强度低于500μmol/(m2.s)时,小麦旗叶的光合速率快速增加;气孔导度随光强增强而增强并呈正相关(p<0.05),但在光强度低于100μmol/(m2.s)时气孔导度增幅很小;蒸腾速率随光强度的变化与光合速率趋势基本一致;胞间CO2浓度随光强度的增加呈先降低后增加趋势。  相似文献   

7.
采用LI-6400便携式光合仪,对种植于浙江农林大学铁线莲种植资源圃6种铁线莲的光合特性进行测定与系统比较。结果显示:6种铁线莲属植物光补偿点(LCP)为13.20~81.96μmol·m~(-2)·s~(-1),光饱和点(LSP)为1 230.77~1 364.41μmol·m~(-2)·s~(-1),表明供试种类可有效利用强光进行光合作用。野生种类的最大净光合速率(Pnmax)和表观量子效率(AQY)均显著高于栽培品种。供试的铁线莲属植物净光合速率(Pn)日变化均呈"单峰"曲线,其中毛萼铁线莲的Pnmax出现在午后光强和气温最高时,其具有良好的强光高温适应性。相关性分析表明,外界光强(PAR)和叶片蒸腾速率(Tr)与Pn达显著或极显著相关水平,是影响铁线莲光合速率日变化的主要因子。  相似文献   

8.
两种植物生长延缓剂对核桃叶片光合特性的影响   总被引:1,自引:0,他引:1  
试验以7年生‘新新2号’为材料,在核桃展叶期和硬核期分别对核桃树体连续2次喷施不同梯度浓度的缩节胺和多效唑。利用Li-6400便携式光合测定仪在核桃展叶期、硬核期、充实期、油脂转化期、果实成熟期采用开放式气路测定净光合速率(Pn)、胞间CO_2(Ci)、气孔导度(Gs)、蒸腾速率(Tr)等光合指标。结果显示:(1)对核桃树体喷施适宜浓度的缩节胺和多效唑可以提高叶片的净光合速率和气孔导度,缩节胺以浓度300 ppm,多效唑以1 000 ppm为宜,如果喷施高浓度的两种生长延缓剂则会降低净光合速率值;(2)净光合速率和气孔导度走势大致呈单峰趋势变化,缩节胺处理下的峰值出现在硬核期(Pn=15.1μmol·m~(-2)·s~(-1);Gs=0.21 mmol·m~(-2)·s~(-1)),多效唑处理下的峰值出现在充实期(Pn=13.29μmol·m~(-2)·s~(-1);Gs=0.19 mmol·m~(-2)s~(-1)),胞间二氧化碳和蒸腾速率变化波动大,可能与果园微环境的变化有关。  相似文献   

9.
以天名精(Carpesium abrotanoides L.)为材料,采用便携式光合仪LI-6400测定其光响应曲线,用5种常用模型对数据进行拟合,探讨天名精光响应的最适模型,并分析天名精光合速率与其他光合参数的相关性。结果表明:(1)直角双曲线改进模型拟合效果最好,拟合得到的决定系数(R~2)达0.999,得到的最大净光合速率(Pn_(max))为16.34μmol CO_2·m~(-2)·s~(-1)光饱和点(LSP)为1 793.65μmol·m~(-2)·s~(-1)、光补偿点(LCP)为39.43μmol·m~(-2)·s~(-1)、暗呼吸速率(R_d)为2.16μmol CO_2·m~(-2)·s;(2)天名精的净光合速率(Pn)与气孔导度(Gs)、光合有效辐射强度(I)、蒸腾速率(Tr)和CO_2浓度(CO_2R)呈极显著正相关,与胞间CO_2浓度(Ci)呈极显著负相关。  相似文献   

10.
连翘光合作用特性及其影响因子分析   总被引:2,自引:1,他引:1  
以7a生连翘为试材,对其光合作用日变化和光响应曲线进行测试,并对影响其光合作用的生理因子和环境因子进行了相关性分析。结果表明:连翘净光合速率、气孔导度和蒸腾速率的日变化均呈单峰曲线,净光合速率的峰值出现在12:00,对光环境的适应性较强;光补偿点为51.49μmol·m~(-2)·s~(-1),显示了阳性植物的光合特性;日平均光合速率为9.9μmol·m~(-2)·s~(-1),表现出较强的光合作用能力。连翘净光合速率与光合有效辐射、气孔导度、蒸腾速率呈显著的正相关关系,与胞间CO_2浓度呈显著的负相关关系,而与外界CO_2浓度、空气温度和相对湿度无显著的相关性。  相似文献   

11.
菰叶片净光合速率日变化及其与环境因子的相互关系   总被引:53,自引:0,他引:53  
 【目的】通过研究菰叶片净光合速率日变化及其与环境因子的相互关系,目的为菰资源的开发和利用提供参考。【方法】利用Li-6400型光合作用测定系统,测定了菰叶片净光合速率和环境因子的日变化,通过相关性分析,考察了环境因子对净光合速率日变化的影响。【结果】菰功能叶片净光合速率为15.0~21.5 ?mol·m-2·s-1,光补偿点为45 ?mol·m-2·s-1,光饱和点为1 040 ?mol·m-2·s-1。菰叶片净光合速率、气孔导度和蒸腾速率的日变化均呈单峰曲线,净光合速率的峰值出现在上午11:00时,上午8:00~11:00时的平均净光合速率比下午13:00-16:00时的平均净光合速率高4.7 ?mol·m-2·s-1。气孔导度和蒸腾速率的峰值分别出现在13:00和14:00时。一日中上午5:00~11:00和下午15:00~19:00时净光合速率与光量子通量密度之间呈显著正相关 (r=0.9874**、0.9321**),11:00~15:00时两者之间呈不显著正相关(r=0.4440)。上午5:00~11:00和下午15:00~19:00时净光合速率与空气温度之间呈显著正相关(r=0.9617**、0.9852**),11:00~15:00时两者之间呈显著负相关(r=-0.8110*)。净光合速率与气孔导度之间呈正相关(r=0.7936*),与胞间CO2浓度呈负相关(r=-0.8026*)。气孔导度和蒸腾速率与光量子通量密度之间呈显著的正相关(r=0.9104**、0.7858*)。【结论】菰叶片的光补偿点较低,而光饱和点较高,对光环境的适应性较强,为典型的阳生植物。影响净光合速率日变化的主要环境因子是光量子通量密度和空气温度。  相似文献   

12.
雷公藤无性系苗木光合生理特性研究   总被引:16,自引:4,他引:12  
对雷公藤(Tripterygium wilfordiiHook.f.)23个无性系苗木的光合生理特性进行研究。结果表明:雷公藤苗木净光合速率Pn日变化曲线为不对称的双峰曲线,蒸腾速率tr日变化曲线为单峰曲线,气孔导度Gs、胞间CO2浓度Ci的日变化分别呈勺形、倒双峰变化趋势;净光合速率随光合有效辐射增加而达到峰值,随后反而降低,光补偿点为17μmol.m-.2s-1,光饱和点为600μmol.m-.2s-1;净光合速率与气温、叶温、光合有效辐射、蒸腾速率呈极显著正相关关系,与大气相对湿度、叶内湿度、胞内CO2浓度、胞间CO2浓度呈极显著负相关关系;通过分析比较,初选获得编号为17、13、16、10、11、4、6共7个具有较高净光合速率的优良无性系。  相似文献   

13.
生态因子对地被石竹光合作用的影响   总被引:2,自引:2,他引:0  
采用Li-6400型光合作用系统,对不同季节地被石竹的光合日变化进行研究,通过相关分析和通径分析,得出光合速率与生态因子间的关系,并综合曲线拟合和多元逐步回归分析方法对净光合速率(Pn)与影响因子建立相应的优化模型方程.结果表明:(1)地被石竹叶片Pn的日变化在春季和秋季呈单峰曲线型;夏季表现为双峰曲线型,具有典型的光合"午睡"现象.(2)春季,蒸腾速率和气温是直接影响地被石竹叶片Pn的主要因子;夏季,空气相对湿度、胞间CO2浓度和气温是直接影响Pn的主要因子;秋季,胞间CO2浓度和蒸腾速率是直接影响Pn的主要因子.(3)地被石竹光补偿点约为56.94μmol.m-2.s-1,光饱和点约为800μmol.m-2.s-1,补偿点、饱和点均较高,属于喜光植物.  相似文献   

14.
以2年生杉木幼苗为试验材料,采用便携式光合测定仪Li6400-XT测定了人工光源下白、红、蓝、黄和绿光5种光质下不同光强对杉木幼苗叶片光合光响应曲线、光合生理指标的影响,从而比较不同光质条件下杉木幼苗叶片光合作用的差异。结果表明:不同光质不同光强下杉木幼苗叶片的光合速率(Pn)间均差异极显著(P<0.01)。在弱光强下(≤200μmol·m~(-2)·s~(-1)),红光下杉木幼苗叶片的Pn和水分利用效率(WUE)显著高于其他光质,分别为5.743、6.783μmol·m~(-2)·s~(-1)。强光强下(≥1 500μmol·m~(-2)·s~(-1)),蓝、绿光下杉木幼苗叶片的Pn分别为13.158、13.400μmol·m~(-2)·s~(-1),高于其他光质,气孔导度(Gs)和胞间CO_2浓度(Ci)均有增大,且绿光增幅大于蓝光。在中等光强下(200~1 500μmol·m~(-2)·s~(-1)),白光下杉木幼苗叶片的Pn、Ci均处于较高水平,黄光下杉木幼苗叶片的WUE和Ci在光强为500μmol·m~(-2)·s~(-1)时达到最大值后持续下降。  相似文献   

15.
芍药光合特性研究   总被引:2,自引:0,他引:2  
采用Li-6400便携式光合分析仪,测定了5年生大田芍药‘大富贵’(Paeonia lactiflora‘Da Fugui’)开花期的光合作用。结果显示:芍药的净光合速率日变化呈"单峰型"曲线,最大净光合速率为11.8μmol·m-2·s-1,出现在11∶00;而水分利用效率表现出早晚高、中午低的变化规律。净光合速率与蒸腾速率、气孔导度、水分利用效率呈极显著正相关,与胞间CO2浓度呈极显著负相关。表明芍药光合速率主要控制因子为非气孔限制。芍药的光饱和点为1000μmol·m-2·s-1,光补偿点为34.98μmol.m-2.s-1,光合表观量子效率为0.0409,表明芍药属阳性植物,且耐荫性较强。  相似文献   

16.
采用Li-6400光合测定系统以多年生栀子花(Gardenia jasminoides Ellis.)为研究对象,测定其光合特性日变化及光响应。结果表明:栀子花净光合速率日变化呈双峰型,存在光合"午休"现象。日最大净光合速率为3.210μmol.m-2.s-1。胞间CO2在体积分数为4×10-4时,栀子花光补偿点为10.8μmol.m-2.s-1,光饱和点为1225μmol.m-2.s-1。栀子花的光合特性表明其为典型的阳性耐荫植物,对光照的适应性较强。  相似文献   

17.
甜樱桃“红玛瑙”的光合特性研究   总被引:3,自引:0,他引:3  
以甜樱桃品种"红玛瑙"为试材,用LI-6400光合作用测定系统对其光合特性进行了研究。结果表明,红玛瑙樱桃净光合速率日变化呈双峰曲线,中午前后光合速率下降,出现"午休现象"。净光合速率年变化呈双峰曲线。红玛瑙樱桃光饱和点为2 362.5μmol.m-2.s-1,光补偿点为31.94μmol.m-2.s-1,CO2饱和点和补偿点分别为1 245μmol CO2.mol-1和65.72μmol CO2.mol-1,光合最适温度为27.75℃。  相似文献   

18.
测量了‘海瑞特兹’、‘秋福’、‘秋红’和‘四季红’4个树莓品种的光合曲线、CO2曲线与光合特征日变化。结果表明:4个树莓品种光饱和点为742.50~887.50μmol·m -2· s-1,光合有效辐射超过饱和点后光抑制现象不明显。光补偿点为20.58~72.09μmol· m-2· s-1,光饱和光合速率为9.82~17.73μmol· m-2· s-1,表观量子效率为0.0381~0.0445。4个树莓品种CO2补偿点为89.95~104.43μmol· mol-1,CO2饱和点为1136.67~2860.00μmol· mol-1,最大再生速率为25.75~45.41μmol· m-2· s-1,羧化效率为0.0258~0.0393。4个树莓品种的净光合效率日变化曲线均呈双峰型,峰值分别大约出现于08:00和16:00。4个树莓品种均具阴生植物特征。露地栽培时四季红净光合速率最高,在高CO 2摩尔分数条件下,秋红和海瑞特兹碳同化能力最优。  相似文献   

19.
大田棉花叶片光合特性的研究   总被引:35,自引:1,他引:35  
以Li- 6 40 0便携式光合测定系统对大田棉花叶片光合特性的研究发现 ,抗虫棉 33B不同叶龄叶片的光合日变化皆呈双峰曲线 ,可见明显的光合“午休”现象 ,但“午休”出现早晚、持续时间因叶龄而异。光照、温度和CO2 浓度皆对棉花的光合作用有显著的影响。棉叶的光补偿点与叶龄有关 ,老叶 (>45天 )较低 ,幼叶 (<15天 )较高 ,功能叶 (15~ 30天 )界于二者之间 ,无论老叶还是幼叶 ,其光饱和点皆高于 2 10 0 μmol·m-2 ·s-1;棉花光合中CO2 补偿点约为 80 μmol/mol,饱和点约为 110 0 μmol/mol;光合的最适温度为 2 5~ 30℃ ,且最适温度与光照强度的变化无关 ;叶龄 15~ 30天的净光合速率 (Pn)最大 ,老叶和幼叶的Pn较小。同一光强下以倒 5叶的Pn最高 ,并见Pn随叶位上升急剧降低而随叶位下降缓慢下降的现象 ,叶位间的光合差异不完全是由叶龄的差异所致  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号