首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
利用高光谱近地遥感技术,采集不同氮素水平下的不同生育期的寒地玉米冠层高光谱图像,采用ENVI软件提取玉米冠层的光谱反射率。结果表明,不同氮素水平下寒地玉米冠层反射率存在较大差异,玉米“红边”具有双峰现象,红边位置呈“红移”现象;根据玉米冠层高光谱反射率以及红边位置峰值可定性区分严重缺氮、正常施氮和过量施氮。  相似文献   

2.
以不同施氮量试验小区为依托,对各生育期水稻(Oryza sativa L.)冠层光谱反射率及一阶微分光谱进行分析。结果表明,水稻冠层光谱随生育期的变化规律与其生长发育变化特征相对应;不同施氮条件下水稻冠层光谱反射率随施氮量增加在可见光波段降低、近红外波段升高,其中550~600 nm和800~900nm处差异明显,是诊断氮素的特征波段;红边位置(λr)和红边斜率(Dr)在孕穗期前均随着氮素水平的提高而增加,齐穗期后λr出现蓝移现象,Dr减小;将特征波长的比值指数、λr和Dr与叶片氮积累量进行相关性分析,结果显示,800 nm和550 nm的反射率之比(R800 nm/R550 nm)与叶片氮积累量的相关性较好,其相关系数为0.864,λr和Dr与叶片氮积累量的相关系数分别为0.814、0.908。说明合适的光谱变量可以诊断水稻氮素状况,进而为合理施肥提供参考。  相似文献   

3.
采用光谱分析方法对生长在东北黑土上的大喇叭口期春玉米进行了不同施氮量、不同品种的冠层光谱特征研究。结果表明:不同施氮量下玉米冠层全光谱曲线图具有类似的趋势,350~500 nm和640~660 nm波段内反射曲线随着施氮水平的增加呈上升趋势,光谱反射率在不同波段差异较大,在可见光波范围内,350~500 nm波段内N2处理光谱反射率普遍高于其他处理,在500~650 nm附近反射率N0N3N2N1,反射曲线呈先下降后上升趋势排列;在750~1 350,1 450~1 800,2 000~2 350 nm波段内的玉米冠层光谱特征在不同施氮量下也呈现不同的趋势;施氮量对750~1 350,1 450~1 800,2 000~2 350 nm波段内的玉米冠层光谱特征有一定程度的影响;正常施氮量条件下不同品种玉米全光谱曲线在整个波段的趋势均一致,聚类分析显示不同玉米品种在不同波段光谱反射率差异较大。  相似文献   

4.
旱区糜子农田冠层高光谱反射特征研究初报   总被引:1,自引:0,他引:1  
高光谱遥感监测技术能快速获取作物冠层相关参数信息,是实时监测作物长势的重要技术。为探索不同糜子品种的冠层光谱反射特征,试验研究了不同品种和不同栽培密度条件下糜子冠层光谱反射率,并分析了其红边特性。结果表明,不同品种糜子的光谱反射率在总体上呈现一致的变化趋势,在各波段存在不同的差异;不同密度梯度下,最大密度处理D3的光谱反射率在350~1 000 nm波段略大于其他处理,其余波段差异不显著;从开花期到灌浆后期,光谱的红边位置出现"蓝移"现象,红边幅值减小。  相似文献   

5.
冬小麦叶片氮含量的时空分布及光谱监测研究   总被引:2,自引:2,他引:0  
叶片氮素含量与作物生长密切相关,为明确对氮素响应敏感的叶片位置,比较冠层光谱和叶片光谱预测叶片氮含量的精度,研究基于氮素运筹试验,测定叶片氮含量以及冠层、叶位光谱反射率,分析氮含量与反射率的响应关系。结果表明,冬小麦叶片氮含量随施氮量增加而增加,随生育进程而降低,其中,顶3叶变化幅度最大;孕穗期,各施氮处理含氮量大小趋势基本为顶2叶顶1叶顶3叶,其余时期为顶1叶顶2叶顶3叶,顶2叶对氮素响应也较为敏感;叶片光谱预测不同叶位叶片氮含量PLS模型效果均优于冠层光谱,R2最大达0.810,RMSE为0.242。研究以期为冬小麦氮素研究提供一定的理论依据。  相似文献   

6.
本研究基于玉米-大豆带状套作复合种植模式,以不同施氮水平下的玉米为试验材料,在拔节期、抽雄吐丝期和灌浆期分别测定其叶片与冠层的反射光谱和叶绿素含量,通过连续小波变换和其他算法(最大一阶导数法、四点内插法和线性外推法)分别提取其红边位置,系统分析红边位置与叶绿素含量之间的定量关系,以比较用各红边位置算法提取的红边位置在叶片和冠层尺度上对叶绿素含量估测的准确性及稳定性。结果表明:基于连续小波变换提取的红边位置,在叶片和冠层尺度上对叶绿素含量的估测精度较高,稳定性最强,表明连续小波变换方法在提取玉米反射光谱红边位置上是可行的。通过线性外推法提取的红边位置构建的玉米叶片叶绿素含量和四点内插法构建的冠层叶绿素含量定量估测模型的预测效果最佳。本研究为玉米反射光谱红边位置的提取提供了新方法,构建了玉米叶绿素含量在不同观测尺度(叶片、冠层)上最佳的定量估测模型,为玉米氮素营养状况的监测提供了有效途径。  相似文献   

7.
测试了棉花2个品种4水平种植密度的4个关键生育时期冠层反射光谱,应用微分技术处理棉花冠层反射光谱,提取了红边(680~750nm)波段范围的最大一阶微分值(Dr)和红边面积(SDr)参数。分析了棉花冠层红边参数在不同生育期的变化特征和棉花吐絮期的两种生长类型的冠层红边状况,表明红边位置可以指示它们的氮素状况。以新陆早8号的SDr为自变量与对应的LNA为因变量进行相关分析,SDr与冠层LNA达1%极显著相关(R=0.9186**,n=32),利用其构建的模型方程估算新陆早6号的LNA,实测LNA和估测LNA的估计标准差为0.8909g/m2,估算精度为88.1%(R=0.9277**,n=32),说明采用高光谱提取的红边参数信息是无损实时、快捷评价棉花氮素状况的有效方法。  相似文献   

8.
通过光谱遥感技术对水稻长势进行监测,可以为水稻高产高效生产提供科学依据.该研究以晚稻天优华占为供试品种,设置不同施氮量的田间试验,研究不同氮素水平下水稻叶面积指数与冠层光谱反射率之间的关系,结果表明水稻叶面积指数有随着施氮量增加而增加的趋势,冠层光谱对不同施氮量群体有明显的响应特征,叶面积指数与冠层光谱反射率在720 nm左右的红边区域相关系数最大,进一步构建了水稻LAI与冠层反射光谱的数学模型.  相似文献   

9.
不同算法红边位置监测小麦冠层氮素营养指标的比较   总被引:6,自引:1,他引:5  
【目的】红边位置常被用于监测作物叶片氮素营养状况。本文旨在通过不同算法提取红边位置,分析并比较不同算法提取的红边位置对氮素营养监测模型的准确性和可靠性差异,确定监测小麦叶片氮素营养的最佳红边位置算法及定量模型。【方法】基于不同施氮水平、播种密度、品种类型和生育时期的小麦田间试验,系统分析不同算法的红边位置(一阶微分、倒高斯法、多项式拟合法、四点内插法、拉格朗日法、线性外推法)与冠层叶片氮素营养指标的定量关系,比较不同算法红边位置对氮素营养监测的准确性和可靠性。【结果】线性外推法为计算小麦红边位置的最佳算法,并建立了基于线性外推法的小麦冠层叶片氮素营养定量监测模型。【结论】研究结果为小麦冠层叶片氮素营养指标的可靠监测提供了有效途径。  相似文献   

10.
【目的】研究不同程度盐碱化土壤上植被的光谱特征,为基于典型植被冠层光谱特征估测宁夏银北地区植被生长状况和土壤盐碱化程度提供理论依据。【方法】于2018年7月中旬,在宁夏银北盐碱地区选取样地,调查不同盐碱化程度土壤的理化性质及其上代表性植被的叶片叶绿素相对含量,分析不同程度盐碱化土壤上代表性植被类型(白刺和芦苇)以及中度盐碱化程度土壤上15种植被(向日葵、芦苇、花花柴、白茎盐生草、西伯利亚滨藜、藜、稗、紫苜蓿、柳枝稷、水稻、砂引草、白刺、槐、赖草、芨芨草)的冠层光谱特征及红边参数变化,研究植被冠层红边参数与土壤pH值、全盐含量以及叶片叶绿素含量的相关性。【结果】不同程度盐碱化土壤的理化性质及其上代表性植被的叶片叶绿素相对含量有明显差异。随着土壤盐碱化程度的增加,在可见光波段(350~760 nm),白刺冠层光谱反射率呈先上升后下降的趋势,芦苇冠层光谱反射率总体上先降低后升高;在760~1 400 nm波段,白刺冠层光谱反射率逐渐降低,芦苇冠层反射率先升高后降低;在1 400~2 500 nm波段,白刺冠层反射率分别是先升高后降低(1 400~1 900 nm)和持续增加(1 900~2 500 nm),芦苇冠层反射率先降低后升高。随着土壤盐碱化程度的增加,白刺冠层光谱红边位置、红边斜率、红边峰值面积以及红边斜率与最小振幅的比值均减小;芦苇冠层光谱以上红边参数均先增加后减小。中度盐碱化土壤上,15种植被冠层光谱特征曲线变化趋势相似,但光谱反射率大小存在不同程度差异;除了最小振幅之外,15种植被冠层光谱的红边位置、红边斜率、红边峰值面积以及红边斜率与最小振幅的比值差异较大,故根据光谱特征在野外能够区分典型植被类型。土壤pH值与红边位置、红边斜率和红边峰值面积均呈极显著负相关关系,与红边斜率与最小振幅的比值呈显著负相关关系;土壤全盐含量与红边参数均不相关;叶片叶绿素含量与红边位置之间呈极显著正相关关系,与红边斜率和红边峰值面积之间为显著正相关关系。【结论】在不同程度盐碱化土壤上,不同植被冠层光谱特征变化趋势有差异,根据典型植被冠层光谱特征可以估测宁夏银北地区植被生长状况和土壤pH。  相似文献   

11.
基于冠层反射光谱的水稻群体叶片氮素状况监测   总被引:42,自引:4,他引:42  
 研究了不同氮肥水平下多时相水稻冠层光谱反射特征及其与叶片含氮量等参数的关系。结果表明 ,水稻冠层光谱反射率与叶片氮积累量 (单位土地面积上叶片的氮素总量 )显著相关 ,尤其是近红外与绿光波段的比值(R810 /R560 )与叶片氮积累量 (LNA)呈显著线性关系 ,不受氮肥水平和生育时期的影响 ,回归方程为LNA =0 .85 9R810 /R560 - 1.15 96。利用不同粳稻品种、播期、密度、水分和氮肥处理的数据对方程进行了较充分的检验 ,表明模拟值与实测值之间符合度较高 ,估算精度为 91.2 2 %,估计的RMSE为 1.0 9,平均相对误差为 0 .0 2 6。  相似文献   

12.
棉花冠层反射光谱与叶片氮含量定量关系研究   总被引:1,自引:1,他引:0  
对可见光波段至短波红外波段(350~2 500 nm)棉花田间冠层光谱反射率与叶片含氮量间的关系进行了相关分析.结果表明,350~732、733~940和1 970~2 477 nm波段的光谱反射率与叶片含氮量极显著相关;940~1 176 nm波段的光谱反射率与叶片含氮量显著相关,以上波段为叶片全氮敏感波段.通过分析叶片含氮量与高光谱特征参数关系,得出吸收谷特征参数Depth1154和PRI(570,530 nm)可以用来预测盛花期叶片含氮量,其中Depth1154的复相关系数最高达到0.747 3,为运用遥感技术大面积、迅速、无破坏地来预测棉花生长状况以提供可能.  相似文献   

13.
 研究了不同施氮水平下小麦籽粒蛋白质含量及相关品质性状与冠层反射光谱、植株氮素状况之间的定量关系。结果表明,小麦灌浆期冠层反射光谱可以用来直接预测籽粒蛋白质含量、沉降值和降落值,成熟期冠层反射光谱对籽粒醇溶蛋白和谷蛋白含量的监测具有较高的可靠性;籽粒蛋白质含量与花后14 d叶片含氮量的相关性较好,并且花后14 d比值指数RVI (1220, 710)能准确反演叶片含氮量,进而可以间接地预测籽粒蛋白质含量。据此提出了小麦籽粒蛋白质含量及相关品质指标的两种监测技术途径:基于灌浆期反射光谱的直接预测和基于花后14 d(灌浆中期)叶片含氮量的间接估测。  相似文献   

14.
农作物冠层光谱是植物冠层光谱与周围环境光谱的混合光谱。利用北京小汤山地区的冬小麦在2001年4~5月生长期内的土壤含水量和冬小麦波谱观测数据,以及北京海淀区的夏玉米在2003年7~9月生长期内的LAI和夏玉米波谱观测数据,分析了在不同生育时期条件下,典型农作物(如冬小麦,夏玉米)的波谱数据与主要环境要素之间的相互关系。结果表明:在夏玉米抽丝期前叶面积指数与冠层光谱反射率相关性较差,而在抽丝期后相关性较好;冬小麦的苗期土壤含水量与冠层光谱在近红外波段相关系数较高,并在1 360~1 380 nm拟合得出方程。经检验,在α=0.01水平下是显著的。  相似文献   

15.
基于高光谱遥感的冬小麦叶水势估算模型   总被引:2,自引:0,他引:2  
【目的】采用高光谱技术,建立快速、无损与准确获取冬小麦叶水势的估算模型,为小麦灌溉的精确管理提供科学依据。【方法】利用不同水分处理的大田试验,于小麦主要生育期同步测定冠层光谱反射率、叶水势、土壤水分等信息,并探讨高光谱植被指数与冬小麦叶水势之间的定量关系。通过相关性分析、回归分析等方法,基于不同水分处理,构建4种植被指数与冬小麦叶水势的估算模型。【结果】不同水分处理和不同生育期的冬小麦,其冠层光谱反射率具有显著的变化特征。在可见光波段,冬小麦冠层反射率随着水分含量的增加而逐渐降低,而在近红外波段,其冠层反射率则随着土壤水分含量的增加而升高。随着小麦生育期的推进,在近红外波段,抽穗期的冠层反射率比拔节期的高,在灌浆期之后,红波段(670 nm)、蓝波段(450 nm)的反射率上升加快;4种植被指数与叶水势显著相关(P0.05),相关系数|r|均在0.711以上,四者均可用于冬小麦叶片水势的定量监测。在充分供水条件下(70%FC),植被指数OSAVI和EVI2与叶水势的相关系数|r|(分别为0.75和0.771)均低于植被指数NDVI和RVI与叶水势的相关系数|r|(分别为0.808和0.896),而在重度水分亏缺条件下(50%FC),植被指数OSAVI和EVI2与叶水势的相关系数|r|(分别为0.857和0.853)均高于植被指数NDVI和RVI与叶水势的相关系数|r|(分别为0.711和0.792);所建模型对45个未知样的预测结果与实测值相似度较高,其回归模型R~2、验证模型MRE、RMSE的范围分别为0.616—0.922、-17.50%—-12.52%、0.102—0.133。在70%FC水分处理下,基于EVI2(enhanced vegetation index)所得叶水势估算模型的R~2最高,为0.922,而在60%FC和50%FC水分处理下,由于考虑了土壤背景的影响,基于OSAVI所建模型的R~2最高,分别为0.922和0.856。【结论】4种植被指数均可用于冬小麦叶水势的定量监测。但是,在构建不同水分处理的叶水势估算模型时,应考虑土壤背景对冠层光谱的影响。研究结果可以为小麦精准灌溉管理提供技术依据,为星载数据的参数反演提供模型支持。  相似文献   

16.
白菜苗期对不同硫处理的光谱反应   总被引:1,自引:0,他引:1  
本文以盆栽试验的方法,通过对不同土壤硫处理情况下的白菜苗期光谱曲线及其生长状况、叶绿素含量和体内营养元素含量的对应分析,结果表明:不同硫处理情况下,白菜苗期的反射光谱曲线在形状上基本相同,绿峰出现在560nm处、红端位于720nm处、近红外平台出现在780~924nm。不同土壤硫处理情况下没有“红移”和“蓝移”现象;反射光谱曲线对白菜苗期的植株生长状况的敏感有四处,可见光区为500nm和690nm,近红处区在1900nm处,2400nm波长以后,对植株含水量的敏感性增强;不同的叶绿素含量表示方法在光谱相关曲线上的反映完全不同,其中光波反射值对单位叶面积上的总叶绿素含量、叶绿素A含量和叶绿素B含量敏感点在“绿峰”和“红端”两处,而光波反射值对干基表示的总叶绿素含量、叶绿素A含量和叶绿素B含量敏感区域地2400nm以后;植株反射光谱对白菜苗期植株体内不同营养元素种类和含量均有不同的反映,根据不同营养元素的光谱相关曲线,可将白菜苗期植株体内营养元素分为三类,一类是Ca、K、Cu、Fe和N,另一类是P、Mg和Mn,Zn元素的光谱相关曲线最为特别;白菜苗期植株性状值相关性高的性状,在光谱相关曲线中最接近。  相似文献   

17.
为探究不同覆膜和灌溉水平下玉米叶片氮含量垂直分布特征及其遥感反演规律,2020年在甘肃省武威绿洲农业高效用水国家野外科学观测研究站进行大田试验,设置3种灌水量水平(春玉米灌溉需水量的100%(W100)、70%(W70)和40%(W40))和3种覆膜处理(不覆膜(M0)、普通塑料膜(M1)和生物可降解膜(M2)),测定春玉米在不同灌水量和覆膜条件下叶片氮含量垂直分布、冠层反射特征和反射率与叶片氮含量等指标,并采用随机森林法构建氮含量估测模型分析垂直分布的叶片氮含量。结果表明,相同灌水处理的玉米冠层叶片中氮含量由高到低为M0>M2>M1,M0比M2的上、中、下部位叶片氮含量分别增加6.78%、5.11%、2.55%,M2比M1的上、中、下部位叶片氮含量分别增加7.14%、5.24%、5.39%。相同覆膜条件下玉米冠层叶片氮含量由高到低为W100>W70>W40,W100W70的上、中、下部位叶片氮含量分别增加6.84%、6.23%、7.74%,W70W40的上、中、下部位叶片氮含量分别增加4.41%、3.32%、9.49%。在M0W100处理中,玉米冠层叶片氮含量从上到下依次减小,上部比中部叶片氮含量增加7.44%,中部比下部叶片氮含量增加7.60%。在相同覆膜条件下,在可见光波段范围内,冠层反射率随着灌水量的增加而降低;在近红外波段范围内,冠层反射率随着灌水量的增加而增加。综上,基于随机森林的春玉米不同垂直部位叶片中氮含量估算模型均与实测结果相吻合(验证的R2>0.5),上部叶片中氮含量估算精度最高(R2为0.63,RMSE为1.66 g/kg,RPD为1.57),其次为中部叶片(R2为0.73,RMSE为1.66 g/kg,RPD为1.30),精度最低的下部叶片(R2为0.00)。  相似文献   

18.
【Objective】 The objective of the experiments is to develop a key method for fast and nondestructive monitoring canopy equivalent water thickness (CEWT) in cotton (Lumian 54) and to further improve the estimation accuracy of CEWT in cotton monitored by remote sensing technology. 【Method】 Through setting irrigation gradient treatment in different growth period, canopy spectral reflectance and canopy equivalent water thickness and other information were measured simultaneously. Firstly, we comprehensively analyzed the correlation between CEWT and various spectral parameters, including original spectral reflectance, first derivative spectral reflectance, all-band combined spectral index and existing spectral index. Then, we determined the optimal spectral indices of bud stage, flowering and bolls stage, and full growth period. Finally, we constructed a hyperspectral monitoring model of cotton CEWT by linear regression. 【Result】 The canopy equivalent water thickness and the original spectral reflectance show continuous sensitive bands in the near infrared band (NIR) of 780-1130 nm and the short wave infrared band (SWIR) of 1 450-1 830 nm and 1 950-2 450 nm, the sensitivity of the first derivative spectrum to CEWT was enhanced in NIR band than that of the original spectrum, but was weaker in SWIR band than that of the original spectrum. The correlation between the spectral index constructed by the original spectral reflectance and CEWT is stronger than that of the first derivative spectrum, and the ratio spectral index (RSI) is more suitable for the monitoring of CEWT than the normalized difference spectral index (NDSI). During the whole growth period, the inversion accuracy of CEWT by (R1135-5R1494)/R2003 was the best (R 2=0.7878, RRMSE=0.1803). In the bud stage, RSIb(1130,1996) has the best estimation effect on CEWT (R 2=0.7258, RRMSE=0.1444). RSIa (904,1952) was the optimal spectral index (R 2=0.7853, RRMSE=0.2454) for estimating CEWT at the flowering and bolls stage.【Conclusion】The new hyperspectral indexes proposed in this study in different growth stages can be used for quantitative monitoring of canopy equivalent water thickness in cotton. The results of this study can provide reference for the application of hyperspectral technology in monitoring water content of cotton canopy, and provide technical basis for precision irrigation of cotton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号