首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为了获得高效稳定的阿特拉津基因,分离出更多的阿特拉津降解菌,试验采用PCR基因扩增和氮源利用方法,对AD3菌株的阿特拉津降解基因进行了检测和测序,并与其他菌株阿特拉津降解基因的序列进行了比较。结果表明:Micrococcus luteus AD3菌株含有阿特拉津降解基因trzN,atzB,atzC和atzDEF。其中trzN基因中心区的序列与Arthrobacter sp.TC1的trzN完全相同,atzB和atzC基因中心区的序列与Pseudomonas sp.ADP的atzB和atzC完全相同。AD3菌株能以氰脲酸为唯一氮源生长,Micrococcus luteus AD3菌株能将阿特拉津彻底降解成CO2和NH3。  相似文献   

2.
阿特拉津降解菌ADH-2的分离、鉴定及其特性研究   总被引:2,自引:1,他引:1  
从长期施用阿特拉津的玉米地中采集土样,通过富集培养的方法分离出一株能以阿特拉津为唯一碳、氮源生长的细菌ADH-2,结合生理生化特性及16S rRNA基因的相似性分析将其初步鉴定为节杆菌属(Arthrobacter sp.).该菌在10h内对100mg·L-1 阿特拉津的降解率为99.9%.外加氮源能促进菌株的生长,但对阿特拉津的降解有轻微的抑制作用.外加蔗糖和葡萄糖能显著促进菌株的生长,但对阿特拉津的降解表现出显著的抑制.而淀粉既能促进菌株的生长又能促进阿特拉津的降解.对其降解基因的初步研究显示,该菌含有trzN、atzB和atzC 3个阿特拉津降解相关基因.通过与本实验室另外两株阿特拉津降解菌比较,菌株ADH-2具有更好的应用潜力.  相似文献   

3.
用富集培养法,从农药厂的工业废水中分离到高效降解除草剂阿特拉津的AD26菌株,通过16S rRNA基因序列分析,该菌株被鉴定为节杆菌(A rthrobacter sp.).降解基因的PCR分析表明,AD26含有阿特拉津降解基因trzN和atzBC,它能以阿特拉津为唯一氮源、蔗糖或柠檬酸钠为碳源生长,将阿特拉津降解成氰尿酸,降解速度快但降解不完全.假单胞菌(Pseudomonas sp.)ADP是Waekea实验室分离的阿特拉津降解菌株,含有阿特拉津降解基因atzABCDEF,能以阿特拉津为唯一氮源、柠檬酸钠为碳源(不能以蔗糖为碳源)生长.将阿特拉津降解成NH3,和CO2,降解完全但降解速度慢.在阿特拉津浓度为200 mg·L-1的无机盐培养基中进行的AD26和ADP混合培养表明,它们对阿特拉津的降解发生了互补和增强作用,两个菌株能在以阿特拉津为唯一氮源、蔗糖为碳源的培养基中生长,而且生长和降解速率都好于单个菌株,培养72 h后阿特拉津去除率达到99.9%,其中76.7%的阿特拉津被降解成NH3和CO2.这表明由节杆菌AD26和假单胞菌ADP组成的混合菌株在阿特拉津废水处理和污染土壤的生物修复中有很好的应用潜力.  相似文献   

4.
粘土矿物固定化微生物对土壤中阿特拉津的降解研究   总被引:6,自引:0,他引:6  
以粘土矿物为载体,采用吸附挂膜法对已筛选的阿特拉津降解菌株进行固定化,并应用固定化微生物降解土壤中的阿特拉津.结果表明,该菌株在粘土矿物上生长良好,根据菌种生理生化特性、环境扫描电镜图片以及16SrDNA基因的相似性分析初步鉴定该菌株为Ochrobactrum sp..接种降解菌能明显加快阿特拉津在土壤中的降解速率,粘土矿物固定化微生物的降解效果要明显优于游离菌,粘土矿物粒径越小,固定化微生物的降解效果越好,纳米粘土矿物同定化微生物的降解效果要好于原粘土矿物.用一级动力学方程描述阿特拉津在土壤中的降解过程,不同土壤中阿特拉津的降解速率不同.阿特拉津在红壤、砂姜黑土、黄褐土中的降解半衰期(t1/2)分别为36.9、49.1、55.0 d,投加纳米蒙脱石固定化降解菌后的半衰期则分别为16.3、25.3、21.7 d.  相似文献   

5.
冉治霖  朱静 《安徽农业科学》2013,(14):6137-6139,6161
[目的]鉴定1株阿特拉津(ATZ)降解菌株,并对其降解特性进行研究。[方法]通过对取自城市污水处理厂的污泥进行驯化培养,分离能够降解除草剂ATZ的菌株;通过16S rDNA基因序列分析及生理生化试验对菌株进行鉴定,并对其室内降解效果进行优化。[结果]试验分离到1株能降解ATZ的菌株L-1,该菌株与Arthrobacter菌株基因相似,同源性达99%以上,结合生理生化方法,确定该菌株为节杆菌(Arthrobacter sp.);L-1降解ATZ时培养基的最佳碳源为葡萄糖,最佳加入量为3 g/L。在此条件下,将L-1接种于阿特拉津无机盐培养基(ATZ浓度为500 mg/L)96 h后降解率达94.8%。[结论]该研究为进一步研究ATZ降解菌株及其在ATZ微污染水体生物修复中的应用奠定了基础。  相似文献   

6.
采集除草剂阿特拉津污染的土壤,通过直接涂布法和富集驯化培养分离法,分别获得6株和5株能够降解阿特拉津的细菌。通过降解效率和降解动态试验,筛选到1株高效降解阿特拉津的菌株FM326,该菌株能以阿特拉津为唯一的碳源和氮源生长,培养96h后对1000mg·L-1阿特拉津降解效率达到97%。通过生理生化鉴定和16SrDNA序列分析,菌株FM326鉴定为节杆菌属(Arthrobacter sp.)细菌。该菌株表现出最适生长温度30~35℃,最适生长pH值5~9,好氧生长的生长特性。  相似文献   

7.
阿特拉津的主要降解产物在土壤中转化与运移的研究进展   总被引:3,自引:0,他引:3  
毛萌  任理 《中国农业科学》2009,42(5):1690-1697
 阿特拉津是中国华北和东北地区玉米地常用的除草剂,它在土壤环境中的主要降解产物脱乙基阿特拉津和脱异丙基阿特拉津具有与其母体化合物类似的毒性,且极性高、易在土壤中运移。对阿特拉津的主要降解产物在土壤环境中的运移与转化规律开展定量研究,已受到环境科学和土壤科学领域的关注,但系统深入的研究尚不充分。本文较详细地介绍了阿特拉津的主要降解产物在土壤中的吸附、降解和淋溶方面的国内外研究进展,为国内的科研工作者开展与此相关的研究工作提供参考。  相似文献   

8.
为微生物降解菌在农药污染土壤修复工程中应用提供参考,以从长期受阿特拉津污染的农田土壤中筛选出的一株降解菌Pseudomonas sp.为研究对象,采用单因素试验研究其在不同培养条件下对阿特拉津的降解效果,并采用正交试验进一步优化该菌的降解条件。结果表明:碳源对降解效果的影响不大;培养时间48h,底物浓度100mg/L,温度25~35℃,pH 5.0~8.0,盐度0.1%~1%时,该菌对阿特拉津的降解效果较好,降解率大于90%;该菌对阿特拉津降解的最佳组合条件为温度30℃,pH 7.0,盐度0.5%;且3因素对降解效果的影响依次为温度pH盐度。  相似文献   

9.
研究利用富集培养的方法,从黑龙江省长期施用阿特拉津的玉米田(0~10cm)耕层土壤中筛选到以阿特拉津为唯一碳氮源的菌株Z9,其对阿特拉津14d的降解率可达77.7%。通过形态照片观察和生理生化特征测定,初步鉴定Z9菌为微杆菌属(Microbacterium sp).。结果表明,在100mg·L-1阿特拉津中对Z9的生长降解特性研究,接种量为3%,pH为7时生长和降解效果最好。摇床转速越大,菌株生长越好。摇床速度在120r·min-1,降解率最大。在最佳降解条件下,Z9对初始浓度为10、20、40、70、100mg·L-1的阿特拉津溶液的降解均符合一级降解动力学方程。降解半衰期分别为3.56、4.11、5.97、6.36、6.48d。  相似文献   

10.
除草剂阿特拉津微生物降解研究进展   总被引:1,自引:0,他引:1  
阿特拉津是一种低毒除草剂,但因其长时间大范围使用,造成大面积的土壤、地表水、地下水等环境的污染。目前有关阿特拉津的生物降解是世界上生物降解的研究热点之一,文章综述了阿特拉津及降解产物的分析检测、降解微生物的筛选方法与微生物类群、降解途径与降解酶,并展望了农药降解微生物的应用前景。  相似文献   

11.
本文应用零价铁(Fe0)技术,以阿特拉津为目标污染物,考察了零价铁的效应,研究了不同零价铁投加量、不同溶液初始pH值等因素对阿特拉津降解效果的影响。结果表明,零价金属铁脱氯降解阿特拉津,随着金属铁质量的增加,阿特拉津的降解率也会增加;溶液初始pH值2~11时,阿特拉津降解率随其低pH值的增加而减小,可以促进零价金属铁的腐蚀,有利于阿特拉津降解。  相似文献   

12.
[目的]考察Enterobacter sp. LY402在好氧条件下对氯丹的降解能力。[方法]将多氯联苯高效降解菌株Enterobacter sp. LY402运用到氯丹的好氧降解中,系统考察了LY402在好氧条件下降解过程的影响因素。[结果]在不加入其他碳源的情况下,对1.0 mg/L氯丹混合物的4 d降解率达到94%,对于浓度高达10.0 mg/L氯丹混合物总降解率也能达到61%以上。降解体系的温度和pH值对氯丹的好氧降解率有一定影响,pH值5.0~8.0,温度30~40℃对氯丹的好氧降解有利。[结论]Enterobacter sp. LY402具有很强的好氧降解氯丹的能力。  相似文献   

13.
阿特拉津降解菌CS3的分离鉴定及其降解特性的研究   总被引:1,自引:0,他引:1  
为了适应不同环境污染修复需要,分离更多有效的阿特拉津降解菌是十分必要的。鉴于此,本研究从河北省某农药厂排污河中的废水中分离出一株以阿特拉津为唯一氮源生长的高效降解阿特拉津降解菌CS3。经生理生化鉴定和16S rRNA基因序列分析,最终鉴定其为产脲节杆菌(Arthrobacter ureafaciens)。在30℃和pH 7的最适条件下,菌株CS3能在48 h内完全降解50 mg·L~(-1)的阿特拉津,甚至能够在6 d内将500 mg·L~(-1)的阿特拉津完全降解,表明该菌株对阿特拉津具有较好的降解性。菌株CS3含有trzN,atzB,atzC 3个阿特拉津降解基因。菌株CS3具有较宽的温度(10~37℃)和p H(5~11)范围,且具有很好的耐碱性,为未来偏碱环境中阿特拉津污染修复提供了良好的候选菌株。  相似文献   

14.
利用富集培养法,从北方寒区施用阿特拉津的玉米地土壤中,分离出1株阿特拉津高效降解菌GH1,结合其形态、生理生化特征及16S rRNA基因序列分析,将菌株GH1初步鉴定为产脲节杆菌(Paenarthrobacter ureafaciens).菌株GH1在36h内能完全降解100mg/L的阿特拉津,这为北方寒区特定环境中阿特拉津的修复提供了良好的菌株资源.  相似文献   

15.
阿特拉津降解菌的筛选及降解性能研究   总被引:1,自引:0,他引:1  
从陕北地区受阿特拉津污染的土壤中分离、纯化得到3株可降解阿特拉津的菌株,分别编号为AT-1、AT-2和AT-3,27 h的阿特拉津降解率分别为79.2%、77.6%、70.4%,初步鉴定这3株菌均属节杆菌属(Arthrobacter).  相似文献   

16.
采用土壤稀释法和平板纯化法,从受阿特拉津污染土壤中分离出三株高效降解菌,通过形态观察、生理生化分析及16S rDNA鉴定,确定菌株的生物学特征和分类地位。同时选用海藻酸钠、聚乙烯醇、明胶和生物炭为载体包埋菌株,比较固定菌株24 h的物理性能。并采用气相色谱和分光光度法,测定固定化菌株、菌株的降解率及生长情况。经16S rDNA鉴定和构建的发育树结果表明3株降解菌分属ShinellaHerbaspirillumPseudomonas。菌株均在14 d D600达到最大且降解效率高于85%。综合比较4种固定材料后,确定海藻酸钠为最佳包埋菌体材料,其包埋菌株的机械强度、传质性能及成形性较好,且对菌株降解阿特拉津效果影响小。利用微生物固定化技术可提高菌株的耐受力,该方法为微生物修复污染土壤提供了理论基础。  相似文献   

17.
低温下降解阿特拉津的细菌菌株的筛选鉴定和降解特性   总被引:6,自引:1,他引:6  
从吉林市农药厂排污口和长春市裴家垃圾场渗滤液中分离、筛选出2株能够在低温条件下(10℃)高效降解阿特拉津的菌株L1和N8.对其进行鉴定并研究了其降解特性。结果表明:经Biolog细菌鉴定系统鉴定两株菌分别为深红酵母菌(Rhodotomla glutinis)和嗜麦芽糖寡养单胞菌(Burkholderia glumae);通过室内降解条件优化确定2株菌对10mg·L^-1 AT最佳降解条件:初始pH为7,碳源为葡萄糖,L1的接种量为10mE(1.53×10^8个),N8的最佳接种量为2mL(2.48×10^8个),第15d最大降解率L1为80.7%,N8为73.6%。在最佳降解条件下,L1和N8对初始浓度为5、10、15、20、25mg·L^-1阿特拉津的生物降解反应多数符合一级反应动力学方程.半衰期3.10d.从而为生物降解阿特拉津提供了优势菌种。  相似文献   

18.
采用随机扩增多态性DNA标记(RAPD)方法,研究阿特拉津浓度为0、25、50、75、100和125 mg·L-1污染胁迫条件下对阿特拉津高效降解菌Arthrobacter sp.DNS10和Acinetobacter sp.DNS32与非阿特拉津降解菌Escherichia coli K12和Micrococcus luteus N19生长影响及基因组DNA损伤情况。结果表明,在阿特拉津污染胁迫24 h后,随阿特拉津浓度增高,Escherichia coli K12和Micrococcus luteus N19生长速度受抑制强度逐渐明显。利用随机引物对上述四种细菌基因组DNA进行PCR扩增。结果表明,菌株Escherichia coli K12和Micrococcus luteus N19处理组与对照组之间RAPD指纹图谱存在明显差异,在阿特拉津浓度为100 mg·L-1时,基因组模板稳定性(GTS)分别降至52.3%和61.2%。同一浓度下,阿特拉津降解菌Acinetobacter sp.DNS32基因组模板稳定性为82.9%,Arthrobacter sp.DNS10基因组模板稳定性为92.1%。研究表明,阿特拉津胁迫对Escherichia coli K12和Micrococcus luteus N19基因组DNA产生损伤;阿特拉津降解菌Arthrobacter sp.DNS10和Acinetobacter sp.DNS32对阿特拉津胁迫有较高耐受性,适于阿特拉津降解。  相似文献   

19.
本试验以长期使用阿特拉津除草剂的土壤为材料,通过设计特定的培养基来驯化长期使用阿特拉津的土壤微生物,并用涂布平板法分离纯化得到一株菌株,初步判断为阿特拉津降解菌;该菌株通过革兰氏染色,基因组DNA凝胶电泳、PCR分析得知:该菌为杆状,革兰氏染色为阳性,基因组长度为19000bp,16SrDNA长度为1700bp的菌株.  相似文献   

20.
从长期施用多菌灵农药的土壤中,通过不同温度条件下富集筛选,获得1株耐冷多菌灵高效降解菌株.通过生理生化试验和16 S rRNA序列同源性分析鉴定该菌株;应用高效波相色谱法对纯培养条件下菌株的降解特性进行了分析.结果表明,筛选所获得的菌株与Enterobacter菌属的亲缘关系最近,将其命名为Enterobacter sp.D5;该菌株能在以100 mg·L-1多菌灵为唯一碳源的无机盐培养基中生长;15℃、pH值7.0、200 r·min-1的最适生长条件下避光振荡培养12d,多菌灵的降解率达到100%;在最适培养条件下外加氮源可以提高多菌灵的降解率,外加碳源抑制了多菌灵的降解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号