首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用醋酸双氧铀染色与透射电镜技术,以海滨锦葵为试验材料,连续观测水涝胁迫下及涝后恢复期间海滨锦葵根尖细胞内Ca~(2+)的分布与变化特性。结果显示:随着水涝时间延长,海滨锦葵根尖细胞间隙与细胞核、液泡中钙离子沉积密度逐步降低,质体外膜上存在Ca~(2+)分布,但低于对照组,而Ca~(2+)向细胞质移动,在局部区域聚集,导致细胞质钙离子增加。水涝去除20 d后,细胞壁中出现钙离子沉积,细胞间隙、质体外膜上与液泡中所分布钙离子增加,细胞质所聚集的Ca~(2+)逐步分散,基本不存在Ca~(2+)沉积。研究认为,水涝胁迫下,海滨锦葵根尖细胞内Ca~(2+)浓度迅速上升;涝后恢复期间,Ca~(2+)浓度逐渐下降,起着外界信号传递的作用。  相似文献   

2.
导管经历了完整的细胞程序性死亡过程(programmed cell death,PCD),形成运送水分的管状通道;而筛分子分化则经历了细胞程序性半死亡过程,形成运输有机养分的通道。为了进一步弄清二者在小麦(Triticumaestivum L.)颖果发育过程中超微结构上的变化,本研究利用生物电镜和酶的超微细胞化学定位技术比较了筛分子和导管分化过程中超微结构的变化,以及酸性磷酸酶(ACPase,acid phosphatase)活性的分布动态。结果表明:筛分子呈对称性半圆形分布于导管的两侧,且筛分子内细胞核的降解晚于导管,筛分子细胞质主要通过液泡膜内陷包裹细胞器,形成自噬体进行降解,最终仍保留了部分细胞器碎片,筛分子仍然存活;而在导管分化中,主要是液泡破裂后,胞内细胞质被完全降解,导管最终死亡,形成管状分子。ACPase作为液泡的标志性酶,在导管液泡膜破裂后,多定位于线粒体等发生降解的细胞器上。而在筛分子中,不仅在发生降解的线粒体等细胞器上检测到了ACPase活性,在成熟筛分子胞间连丝上也检测到了ACPase活性,表明ACPase不仅参与了小麦颖果筛分子和导管发育中PCD进程,可能还与细胞间物质运输有关。  相似文献   

3.
电镜观察到两年生黑松感染松材线虫后,茎中形成层细胞以及其他的薄壁细胞出现细胞程序性死亡PCD特征:细胞核变形、核染色质浓缩并边缘化;细胞质和液泡中出现大量环状片层及多泡体;细胞壁出现膨胀扭曲;线粒体峭数目减少直至双层膜破毁.在整个变化过程中,细胞质膜始终是完整的,内质网在细胞器降解过程中扮演了重要角色,细胞核在线粒体等细胞器降解之后才崩塌消失.这表明,黑松感染松材线虫后的系统反应过程中有PCD发生,其变化类似于动物细胞中的细胞死亡.黑松感染松材线虫后的系统反应过程中,PCD是持续发生的,最终引起植株全面崩溃,这可能是感病黑松死亡的内因.在感病10d后,形成层区才开始出现空洞化现象.因此,形成层的空洞化并非是植株死亡的主因,而是其感病症状.  相似文献   

4.
对晋A细胞质雄性不育系小孢子发育的超微结构观察发现,晋A不育系在造孢细胞增殖时期即表现出败育迹象。绒毡层细胞质膜断裂破碎,细胞质解体,线粒体、质体等细胞器解体,绒毡层细胞提前解体退化,并可看到明显的细胞质和细胞核浓缩现象。因此,我们认为,小孢子败育过程中绒毡层细胞解体是一种与细胞程序性死亡(PCD)有关的有序过程。  相似文献   

5.
【目的】研究质体囊泡诱导蛋白(VIPP1)运动的调控过程,解析其修复叶绿体被膜的分子机制。【方法】从拟南芥VIPP1-GFP/Col转基因株系中分离叶绿体,在荧光显微镜下观察GTP和Ca~(2+)作用下VPP1-GFP蛋白复合体的运动规律,分析其对该蛋白运动的作用方式,并探讨其作用机制。【结果】离体叶绿体在低渗胁迫下膨胀变大,被膜与类囊体间隙变大并鼓起,VPP1-GFP蛋白复合体开始自由移动。CaCl_2可以完全抑制VPP1-GFP蛋白的运动,这种抑制作用由Ca~(2+)而不是Cl~-引起。GTP可以有效逆转Ca~(2+)的抑制作用,并再次激活该蛋白的运动。低渗胁迫下,叶绿体被膜完整性的维持依赖于VIPP1蛋白的运动。【结论】拟南芥叶绿体VIPP1蛋白的运动受GTP和Ca~(2+)共同调控,GTP对VIPP1蛋白运动起促进作用,Ca~(2+)对该过程起抑制作用。  相似文献   

6.
油菜素内酯对植物细胞钙离子分布的影响   总被引:1,自引:0,他引:1  
【目的】明确油菜素内酯对Ca2+分布的影响,分析油菜素内酯对影响钙稳态的编码Ca2+通道和Ca2+-ATPase相关基因表达量的变化,明确油菜素内酯对钙稳态的影响。【方法】采用焦锑酸钙沉淀法对油菜素内酯(brassinosteroid,BR)处理后Ca2+的分布进行细胞化学定位;利用real-time PCR技术对调控细胞内Ca2+水平的位于细胞质膜、液泡膜和内质网上的编码Ca2+-ATPase的基因及位于细胞质膜、液泡膜和溶酶体上的编码Ca2+通道基因的表达量进行分析。【结果】在未经BR处理的拟南芥细胞中,Ca2+主要分布在细胞壁、细胞间隙和液泡中,细胞质和叶绿体中仅有少量Ca2+的分布;在1 µmol·L-1 BR处理3 h后,Ca2+呈聚集状分布在液泡膜和细胞质膜附近,同时细胞质和叶绿体上的Ca2+分布增多;BR处理6 h后,细胞质和叶绿体中Ca2+分布继续增加,细胞壁中Ca2+分布有所减少;BR处理9 h后,细胞质和叶绿体中Ca2+分布减少,细胞间隙和液泡中Ca2+分布有所增加,但细胞壁中Ca2+分布明显减少,说明BR具有移除细胞壁中Ca2+的作用。CNGC2CNGC12是细胞质膜上编码Ca2+通道的基因,在1 µmol·L-1BR处理3 h后,CNGC2CNGC12的表达量均明显下降;处理6 h后,CNGC2CNGC12的表达量有所恢复;处理9 h后,CNGC2CNGC12的表达量明显增加。TPC1TPC2分别是液泡和溶酶体上钙离子通道相关基因,TPC1TPC2的表达量在1 µmol·L-1 BR处理3 h后也表现为明显下降,但TPC1的表达量在BR处理6 h后的表达量明显高于未用BR处理的对照,而TPC2的表达量直到BR处理9 h后才明显升高。可见,BR可阻滞细胞质中Ca2+浓度的快速上升,液泡膜上编码Ca2+通道基因的表达恢复早于细胞质膜和溶酶体上的Ca2+通道基因,说明液泡中Ca2+大量进入细胞质的时间早于胞外钙库和溶酶体等胞内细胞器。ACA8ACA10是定位在细胞质膜上Ca2+-ATPase基因,1 µmol·L-1 BR处理3和6 h后,ACA8ACA10的表达量没有明显的变化;BR处理9 h后,ACA8ACA10的表达量明显增加;ACA4ACA11是液泡膜上编码Ca2+-ATPase的基因,BR处理后,ACA4ACA11的表达量变化与质膜上的ACA8ACA10的表达变化类似。ACA2是内质网上编码Ca2+-ATPase的基因,ACA2的表达量同样在BR处理9 h后出现了表达量的最高峰。可见,BR处理9 h后,Ca2+-ATPase表达量增加,把细胞质中高浓度的Ca2+泵入细胞间隙、液泡和内质网等胞外和胞内钙库中,调控细胞质中的Ca2+稳态。【结论】BR对第二信使Ca2+具有调控作用,并可通过对钙稳态调控系统的调控传递信号。  相似文献   

7.
TMV侵染番茄引起的细胞结构变化及细胞程序化死亡   总被引:4,自引:1,他引:4       下载免费PDF全文
为研究植物系统反应过程中出现的细胞程序化死亡(PCD)现象,用烟草花叶病毒(TMV)接种番茄叶片,光镜和电镜观察到茎尖顶端细胞出现:PCD特征:线粒体嵴数目减少直至双层膜破毁、前质体基粒扭曲变形、细胞核畸形、核染色质浓缩并边缘化、细胞质和液泡中出现大量环状片层及酚类物质、多泡体出现、细胞壁膨胀扭曲、叶肉细胞的叶绿体基粒和基质片层结构破坏。试验表明:TMV侵染番茄引起的系统反应过程中有:PCD发生;茎尖细胞发生的PCD现象类似于动物细胞中细胞质的细胞死亡。  相似文献   

8.
【目的】探讨入侵植物土荆芥(Chenopodium ambrosioides L.)挥发油对粮食作物玉米(Zea mays L.)保卫细胞的化感效应及其作用机制。【方法】以玉米叶片下表皮保卫细胞为对象,研究了土荆芥挥发油的毒性作用。【结果】经挥发油处理后保卫细胞核形态变化,细胞活性显著降低,细胞核畸变率和死亡率随处理剂量或时间的增加而显著升高(P0.05)。保卫细胞经TUNEL检测呈阳性,与土荆芥挥发油单独作用相比,挥发油和泛Caspase抑制剂Z-VAD-FMK共同作用后细胞活性显著升高,表明土荆芥挥发油诱导玉米保卫细胞出现了Caspase依赖性的细胞凋亡;Ca~(2+)通道抑制剂LaCl_3、Ca~(2+)螯合剂EGTA、硝酸还原酶抑制剂NaN_3、NO合成酶抑制剂L-NAME、活性氧清除剂AsA或过氧化氢酶CAT等可缓解土荆芥挥发油的细胞毒性。【结论】土荆芥挥发油对玉米保卫细胞有显著的细胞毒性,诱导保卫细胞发生Caspase依赖性的细胞凋亡,NO、ROS和Ca~(2+)等信号分子参与了土荆芥挥发油诱导玉米保卫细胞凋亡的信号调节过程。  相似文献   

9.
盐胁迫对美国白蜡和滨梅根系超微结构的影响   总被引:4,自引:0,他引:4  
应用透射电子显微镜观察0(对照),3,9g/L盐胁迫4个月下美国白蜡和滨梅根系细胞超微结构的变化。结果表明:低盐(3g/L)胁迫下,美国白蜡根系细胞质凝聚,质壁分离明显,细胞器降解严重,细胞核核膜部分解离,细胞壁基本正常;滨梅变化不明显。高盐(9g/L)胁迫下,美国白蜡受到深度伤害,细胞质进一步降解,质壁分离严重;滨梅细胞内降解物质明显增多,细胞器降解,细胞核染色质浓度降低,核膜模糊,细胞质膜局部发生内陷,没有发生明显的质壁分离。比较而言,美国白蜡根系细胞受损较为严重,滨梅表现出较强的抗盐性。  相似文献   

10.
【目的】通过对板栗外生菌根发育进程的观察,并标记细胞壁相关成分,为菌根形成的机制提供试验证据。【方法】收集板栗田间菌根、田间非菌根和组培根为试材,采用石蜡切片法观察板栗根系结构,特异性荧光染料Calcofluor White Stain、苯胺蓝标记植物细胞壁的纤维素和胼胝质。【结果】板栗田间菌根的菌套致密且加厚,外皮层细胞间隙具有哈蒂氏网,外皮层细胞径向伸长、横向缩短。标记根系细胞壁发现,田间菌根外皮层细胞纤维素含量比田间非菌根显著增加了43.4%。田间非菌根中柱细胞的胼胝质含量是组培根的1.95倍,田间菌根中柱细胞胼胝质含量比田间非菌根显著降低了21.6%。【结论】板栗外生菌根形成后,外皮层细胞间隙哈蒂氏网明显,且外皮层细胞纤维素含量显著增加,中柱细胞的胼胝质含量显著下降。  相似文献   

11.
为揭示虎头兰与共生的菌根真菌间的相互作用,应用细胞化学的方法定位研究了虎头兰菌根中入侵的菌丝被消化过程的酸性磷酸酶(AcPase)活性变化,结果表明:AcPase反应出现在虎头兰菌根皮层细胞的细胞壁和膜系统上.在菌根真菌侵入虎头兰根部细胞,入侵菌丝被溶酶体包围并消解,直到被消解成空腔或彻底解体,最后溶酶体也随之消失的过程中,虎头兰细胞内的细胞壁、胞间隙、细胞膜、胞间连丝等处AcPase的活性呈现由高到低,最后完全消失的变化;在溶酶体和菌丝细胞上AcPase的活性则表现出由低到高,然后又逐渐降低直至完全消失.被菌丝侵入的虎头兰细胞发生了一系列的变化:细胞壁严重扭曲变形,线粒体、叶绿体及大量小液泡等细胞器消失,细胞核变形逐渐降解直至消失;溶酶体大量出现并包围和消解菌丝细胞,菌丝细胞被彻底消化,溶酶体消失;细胞内又重新出现线粒体、液泡、更新核等细胞器,更新核还可不断的进行有丝分裂.   相似文献   

12.
美洲黑杨次生木质部导管分化进程的超微结构分析   总被引:2,自引:0,他引:2  
利用常规电镜技术,观察研究了美洲黑杨Populus deltoides次生木质部导管分化过程的超微结构变化。结果表明:美洲黑杨导管形态的建成可划分为初生壁的延展、次生壁的构建与穿孔板的形成等3个时期。初生壁的延展是导管分化的初始阶段,导管细胞高度液泡化,细胞质及其细胞器贴壁分布。次生壁的构建是导管分化的关键阶段,次生壁物质的沉积在导管液泡膜破裂之前即已开始,此时导管分子内细胞器结构清晰,其中高尔基体及其分泌小泡最为丰富,说明高尔基体与次生壁物质的合成及运输密切相关;导管分子液泡膜裂解后,次生壁物质沉积极为迅速,伴随次生壁物质的合成,导管分子细胞质解体,细胞核染色质凝聚并边缘化,表现出程序化细胞死亡(PCD)的典型特征。穿孔板的形成是导管分化的终极阶段,在导管次生壁形成时,相邻导管分子的端壁上不发生壁物质的积累,而且在次生壁构建后期,端壁上的壁物质降解,最后残余的端壁断裂形成穿孔板。美洲黑杨次生木质部导管的分化阶段彼此相继有序地进行,其中次生壁构建的启动是导管分子不可逆分化的临界期,随后的分化阶段是一种典型的PCD过程。  相似文献   

13.
毛竹竹秆基本组织发育过程中ATP酶的超微定位   总被引:2,自引:0,他引:2  
利用电镜细胞化学技术埘毛竹[Phyllostachys edulis(Carr.)H De Lehaie]竹秆基本组织发育过程中的ATP酶进行细胞化学定位.竹秆基本组织细胞分化早期,细胞具有较高的ATP酶活性,细胞核、质膜、内质网、线粒体等细胞器的膜系统上都具有ATP酶活性.随着基本组织的分化和发育,长细胞液泡膜上的ATP酶活性增强,而短细胞液泡膜上 ATP酶活性相对较弱;至仞生肇发育后期,质膜上的ATP酶活性升高;次生壁发育期,短细胞质膜上的ATP酶活性显著增强,而长细胞的相对较弱;细胞核、质膜、线粒体、胞间连丝、内质网、质体膜、运输小泡膜以及细胞质内和胞间隙都具有ATP酶活性.在次生壁发育期液泡膜上已观察不到ATP酶反应物.长细胞质膜ATP酶活性从第4年开始降低,短细胞质膜的ATP酶活性始终很高,且无论生长期还是休眠期,短细胞一直保持旺盛的物质主动吸收和活跃的新陈代谢过程.同时短细胞内大量的运输小泡,具有的ATP酶活性,以及胞间连丝沉积有大量的ATP酶反应物,都表明短细胞与周围细胞间频繁、活跃的物质交流.短细胞不仅在物质运输起到重要作用,而且在竹秆继续成熟的过程中可能参与长细胞次生壁的形成.  相似文献   

14.
用胶体金免疫电镜技术,对脱落酸(ABA)在葡萄种子细胞超微结构水平上的分市进行了研究。按葡萄种子细胞液泡中是否含有电子密度大的染色物质,可将其分为含酚和无酚2个主要类型。在含酚细胞中电子密度大的染色物质呈多种状态存在,先是均匀而稀疏地分布在液池中,然后逐渐凝聚成块状,最后浓缩成一薄层并均匀分布在液泡膜内侧。无酚细胞中金颗粒主要标记在细胞核和细胞质,特别是细胞核有大量金颗粒标记,细胞壁有少量金颗粒标记,液泡中没有发现金颗粒标记。和无酷细胞相似,在含酚细胞中金颗粒主要标记在细胞核和细胞质,特别是细胞核金颗粒密度很大,细胞壁有极少金颗粒标记。引人注目的是液泡中聚集态的染色物质上也发现金颗粒标记,但稀疏而均匀分布的染色物质上几乎找不到金颗粒标记,当染色物质最终浓缩成薄层状态时则发现有大量的金颗粒标记。无论用免疫前兑血清染色的对照切片还是材料,不被EDC固定的对照切片中都很难找到金颗粒标记,说明该ABA免疫胶体金电镜定位结果是特异、可靠的。  相似文献   

15.
 【目的】探讨Ca2+ 和Ca2+-ATPase在小麦颖果筛分子(sieve elements,SEs)分化过程中的动态变化及其在SEs的细胞程序性死亡(programmed cell death,PCD)中的作用。【方法】用透射电子显微术观察小麦颖果韧皮部分化过程中的超微结构变化;用Ca2+特异性荧光染色法和焦锑酸钾沉淀法,对小麦颖果韧皮部分化过程中的Ca2+进行组织和亚细胞水平的定位;同时用铅盐沉淀法对Ca2+-ATPase进行定位。【结果】超微结构观察发现,在SEs发育初期,细胞壁逐渐加厚,且内壁呈突起状,随着分化的进行,SEs细胞壁较以前明显变薄且平滑。Ca2+荧光试验表明,花后6~10 d,SEs细胞壁中有Ca2+的积累,其中花后9 d,SEs细胞壁Ca2+浓度最高;到花后14 d,细胞壁Ca2+浓度下降至对照水平。Ca2+亚细胞定位表明,在SEs中,花后1~2 d Ca2+主要分布在细胞膜上和细胞核中;花后4 d,SEs细胞质中Ca2+浓度增加,并且线粒体中也出现Ca2+颗粒;但到花后5~8 d,Ca2+主要分布在SEs细胞壁中,此时线粒体中未发现Ca2+颗粒;在花后10~18 d,Ca2+再次从细胞壁转移到胞内;花后20 d,SEs中Ca2+消失。在中间细胞(intermediary cells,ICs)中,花后1~18 d始终都有Ca2+颗粒,主要分布在细胞内壁上和液泡中。在SEs发育过程中,Ca2+-ATPase的活性发生显著变化。花后3 d时,SEs中的Ca2+-ATPase活性最弱;花后4~14 d SEs有较强的Ca2+-ATPase活性,且主要分布在SEs的细胞壁、细胞膜、胞间连丝等部位和线粒体、细胞核等细胞器上。【结论】Ca2+和Ca2+-ATPase在小麦颖果SEs的分化过程中呈动态变化,Ca2+可能参与介导了SEs的PCD过程。此外,Ca2+和Ca2+-ATPase可能对SEs细胞壁的加厚和SEs的功能实施有一定调控作用。  相似文献   

16.
用透射电镜观察了甜菜坏死黄脉病毒(BNYVV)对甜菜抗、感丛根病品种块根细胞超微结构的影响.结果表明,BNYVV对感病品种的细胞超微结构破坏严重,整个细胞变形,空泡化,细胞核结构发生紊乱,线粒体和高尔基体明显增多,细胞质中小液泡增多,在液泡膜边缘可见到一些纤细丝状物质的圆形或卵圆形小泡突入液泡中.而抗病品种细胞超微结构破坏较轻,寄主细胞产生一系列显著的结构防卫反应:形成细胞壁沉积物及液泡膜上显示出黑色颗粒状沉积物等,保证了胞内代谢相对稳定,为甜菜抗丛根病机理提供了细胞学基础.  相似文献   

17.
低温胁迫下2种樟树叶片超微结构的比较   总被引:1,自引:0,他引:1       下载免费PDF全文
【目的】探讨并比较猴樟(Cinnamonum bodinieri Levl)和芳樟(C.camphora L.(linalool-type))在低温胁迫过程中叶肉细胞超微结构的变化,揭示樟树低温胁迫的响应机制,为北方地区耐寒樟树的引种提供理论依据。【方法】以猴樟和芳樟的1年生幼苗为试材,采用室内低温处理的方法,对2种樟树在0℃下处理12,24,48h及在-5,-10℃下处理24h,取样并采用透射电子显微镜观察樟树叶肉细胞超微结构的变化。【结果】低温胁迫对2种樟树叶肉细胞超微结构均产生了一定影响。适当低温胁迫,导致2种樟树叶肉细胞器中叶绿体结构首先发生膨大变形,淀粉粒出现降解现象,液泡内含物增加。随着胁迫时间的延长和温度的降低,过度的低温胁迫导致叶绿体结构分解,淀粉粒消失,甚至出现质壁分离、细胞器崩溃降解现象。相同低温条件下,猴樟叶绿体结构遭到破坏的程度及淀粉粒降解速度均小于芳樟,至-10℃胁迫24h时,芳樟叶绿体、细胞核等器官均已遭到严重损伤,而猴樟细胞结构尚能维持完整。【结论】低温胁迫下,猴樟叶肉细胞中叶绿体等细胞器的稳定性大于芳樟,其对低温的适应能力相对较强。  相似文献   

18.
【目的】阐明甜菜无融合生殖单体附加系M14雌配子体发育的超微结构特征。【方法】以甜菜无融合生殖单体附加系M14(Beta vulgaris L.VV+1C、2n=18+1)为实验材料,利用电子显微镜技术对其雌配子体的发育过程进行研究。【结果】甜菜无融合生殖单体附加系M14为兼性无融合生殖体,二倍体孢子生殖为蝶须型(Antennaria-type)和韭型(Allium odorum-type),有性生殖为蓼型(Polygonum-type)。蝶须型为主要发育方式,超微结构特征为:雌配子体发育速度较快,从功能大孢子直到细胞化雌配子体时期,细胞器的种类与数量呈现增长趋势:细胞核核仁较大,存在核仁泡,核孔明显;核糖体数量多;线粒体的数量一直较多,从二核雌配子体出现内嵴,膜的结构变得清晰,八核雌配子体的线粒体基质呈电子透明状,细胞化后期恢复到原来的状态;质体的数量变化不大,形状多样,有的含淀粉粒;内质网呈分枝的管状或交织成索状分布在细胞核、液泡或细胞壁附近;高尔基体的数量相对较少,但在未退化的助细胞中十分丰富,活跃地分泌小泡;脂滴一直都存在,常与液泡及线粒体相互靠近;细胞化后期,绝大多数雌配子体的助细胞先后退化,极少数雌配子体只有一个助细胞退化,另一个宿存。韭型与蓼型雌配子体发育速度较慢,与蝶须型相比,直到单核雌配子体时期未见细胞器种类与数量发生明显变化。蝶须型与韭型、蓼型雌配子体仅在功能大孢子与单核胚囊时期通过是否有胼胝质壁加厚以及珠孔端有无退化的细胞痕迹进行区分。【结论】蝶须型、韭型、蓼型雌配子体发育过程中的超微结构特征差异明显,蝶须型雌配子体从功能大孢子至细胞化时期,雌配子体体积增大,细胞器的种类与数量随之增加,呈现代谢旺盛状态。推测蝶须型雌配子体在其后的发育中占优势。单核雌配子体之前依据珠孔端是否有退化细胞痕迹以及有无胼胝质壁加厚可将蝶须型与韭型、蓼型从结构上予以区分。韭型、蓼型从功能大孢子至单核雌配子体时期,雌配子体的体积以及细胞质的成熟程度均呈缓慢增长趋势。推测在其后的发育过程中大量退化。  相似文献   

19.
【目的】比较干旱胁迫下,油松与柴松幼苗根、叶对K~+、Ca~(2+)的积累规律及其根尖表皮细胞对K~+、Ca~(2+)的跨膜转运模式,从K~+、Ca~(2+)平衡的角度揭示2种松树幼苗对干旱胁迫的响应差异。【方法】以培育5个月的油松和柴松幼苗为试验材料,对其分别进行短期(连续7d不浇水)和长期(连续21d不浇水)干旱胁迫处理,以每周浇2次水的幼苗为对照,于干旱胁迫结束时采用原子吸收法测定2种松树根、叶中K~+、Ca~(2+)含量,采用非损伤微测技术检测根尖离子流速;同时在干旱胁迫结束后,对油松和柴松根尖分别采用500μmol/L质膜H~+-ATP酶抑制剂原钒酸钠(sodium orthovanadate,Vanadate)预处理50min、采用20mmol/L质膜K~+通道抑制剂氯化四乙胺(tetraethylammonium,TEA)预处理30min、采用1mmol/L质膜Ca~(2+)通道抑制剂三氯化钆(Gadolinium chloride,GdCl3)预处理1h、采用5μmol/L质膜Ca~(2+)-ATP酶抑制剂Eosin yellow(Eosin-Y)预处理1h,然后检测根尖K~+流与Ca~(2+)流。【结果】与对照相比,短期干旱胁迫对2种松树根、叶组织中K~+、Ca~(2+)含量影响不显著,但长期干旱胁迫下2种松树根、叶组织中K~+、Ca~(2+)含量显著减少,其中油松对K~+、Ca~(2+)的积累大于柴松。短期干旱胁迫诱导油松根尖K~+从对照的轻微外排转为内流,长期干旱胁迫则增强K~+外排流速;与对照相比,柴松在短期与长期干旱胁迫下K~+外排均加强;对照条件下油松Ca~(2+)内、外流基本平衡,短期胁迫下Ca~(2+)内流加强,长期胁迫下在根尖伸长区Ca~(2+)外排加强;柴松在短期与长期干旱胁迫下较对照不同程度地加强了Ca~(2+)外排;油松根尖表皮细胞的K~+和Ca~(2+)内流速度均大于柴松。TEA显著抑制2种松树K~+外流,但Vanadate显著促进2种松树K~+外流,且其对柴松的影响没有油松显著;Eosin-Y可有效抑制2种松树Ca~(2+)外排,但GdCl3仅显著抑制油松Ca~(2+)内流,对柴松Ca~(2+)外流无效。【结论】油松通过较高的H+-ATP酶活性调控依赖去极化激活的离子通道限制K~+外流,同时通过Ca~(2+)-ATP酶与Ca~(2+)通道调控细胞Ca~(2+)跨膜转运,在组织与根尖表皮细胞上减少K~+流失并维持Ca~(2+)平衡,因而较柴松抗旱性强。  相似文献   

20.
该研究采用水培试验方法,用不同浓度的Cd溶液培养大豆幼苗14天,研究了 Cd在大豆幼苗叶片中的累积、亚细胞分配与定位及幼苗的生长状况。结果表明:低浓度的 Cd对大豆幼苗的生长具有刺激效应,但高浓度的Cd胁迫能抑制其生长;叶中 Cd随着溶液中Cd浓度的增加而显著增加;在高浓度 Cd胁迫下,绝大部分 Cd束缚在细胞壁和可溶性成分中,少部分储存在细胞核、叶绿体、线粒体等细胞器中;在细胞壁、叶绿体、细胞核和液泡中可以观察到黑色 Cd颗粒沉淀;细胞间隙扩大,亚细胞结构受损尤其是叶绿体;细胞壁是叶细胞保护内部细胞器的第一屏障,细胞壁和细胞可溶性成分是储存 Cd的主要部位。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号