首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 390 毫秒
1.
以蛋白核小球藻为受试物,分别设0(CK)、0.06、0.12、0.18、0.24、0.30、0.36 mg/L十六烷基三甲基溴化铵(CTAB)处理,考察CTAB对藻生长和生化指标的影响,分析其致毒机理。结果表明:CTAB对蛋白核小球藻96 h EC50值为0.17 mg/L;藻细胞叶绿素a、水溶性蛋白质含量及超氧化物歧化酶(SOD)活性随CTAB浓度增加呈先升后降趋势,当CTAB剂量≤0.06 mg/L时,叶绿素a含量略微上升,>0.06 mg/L时,叶绿素a含量急剧下降;CTAB剂量≤0.24 mg/L处理下蛋白质含量增加,CTAB剂量≥0.30 mg/L处理时水溶性蛋白含量低于对照组;除剂量≤0.06 mg/L处理外,SOD活性随CTAB剂量的增大呈下降趋势;脂质过氧化丙二醛(MDA)含量则随CTAB浓度增加逐渐上升;CTAB对蛋白核小球藻的致毒机理为通过破坏细胞膜完整性,抑制SOD活性,导致MDA含量持续上升。  相似文献   

2.
稀土元素铈对若干淡水绿藻的毒性作用   总被引:1,自引:0,他引:1  
以对数生长期的蛋白核小球藻和栅藻为研究对象,研究不同浓度稀土铈对2种藻的毒性作用。测定了作用192 h后淡水绿藻的生物量、可溶性蛋白含量、叶绿素含量等理化指标。结果表明,蛋白核小球藻的96 h半数效应浓度为29.9 mg.L^-1,栅藻的96 h半数效应浓度为63.6 mg.L^-1。对照蛋白核小球藻的叶绿素含量22.99μg.L^-1,栅藻的叶绿素含量为27.01μg.L^-1,染毒后叶绿素下降50%以上;低浓度具有促进作用,随着硝酸铈浓度的增加对藻体的抑制作用增大;2种藻液的溶解氧在5.8 mg.L^-1左右、pH值随着硝酸铈浓度的增大而下降。  相似文献   

3.
三十烷醇对3种单细胞藻类生长的影响   总被引:1,自引:0,他引:1  
探讨了不同浓度的三十烷醇对蛋白核小球藻、斜生栅藻、菱形硅藻生长及生理活性的影响。结果表明,三十烷醇对这3种单细胞藻的细胞增殖、叶绿素a和光合放氧量均有明显促进作用,对小球藻、栅藻和硅藻的促生长最佳浓度分别为2 mg/L、5 mg/L和0.01 mg/L。  相似文献   

4.
测定了10%苄嘧磺隆可湿性粉剂对固氮鱼腥藻的生长效应以及光合色素的影响,探究其生态毒性。结果表明:低质量浓度处理下(0.1mg/L),苄嘧磺隆刺激固氮鱼腥藻的生长,使其干重和细胞数呈现稳步增长趋势,对光合色素含量影响不显著。高质量浓度苄嘧磺隆(1 mg/L和10 mg/L)显著抑制固氮鱼腥藻的生长,对其生长速率、干重、细胞数及光合色素等产生明显的影响。  相似文献   

5.
蛋白核小球藻是开发营养食品和药物的新材料,本文以新鲜稻叶提取液代替蒸馏水配制BG11培养基,研究了不同浓度稻叶提取液对蛋白核小球藻生长和叶绿素a含量的影响,采用SDS-PAGE技术分析了藻细胞蛋白组分变化。结果表明,稻叶提取液在0.5%~2.0%的浓度范围内均能大幅促进蛋白核小球藻的生长,提高藻细胞叶绿素a的含量,并改变藻细胞的蛋白组分。培养8 d后,2.0%稻叶提取液处理组藻细胞浓度是同期对照组的3.13倍,与1%处理组结果相似。培养4 d后,所有处理组藻细胞叶绿素a的含量达到最大值,其中2.0%稻叶提取液处理组藻细胞叶绿素a含量高达14.91 mg·g-1干重,是对照组的2.58倍。稻叶提取液培养使蛋白核小球藻细胞8种主要蛋白组分相对含量降低,同时产生了4种新蛋白组分。本文结果为水稻叶片的开发应用和蛋白核小球藻的生产养殖提供了新思路。  相似文献   

6.
[目的]为了建立蛋白核小球藻无菌培养体系。[方法]选取卡那霉素、链霉素、庆大霉素、氨苄青霉素、潮霉素和头孢霉素6种常用抗生素,比较蛋白核小球藻的除菌和纯化效果。同时,对比蛋白核小球藻对不同浓度的卡那霉素和潮霉素的耐受性以及单独使用卡那霉素和潮霉素的多次除菌效果。[结果]卡那霉素和潮霉素对涂布带菌藻液的抑菌和除菌效果明显,其他4种抗生素的抑菌效果较差;小球藻对不同抗生素的耐受性不同,蛋白核小球藻对潮霉素敏感,50 mg/L就可以明显抑制其的生长,而对卡那霉素的敏感性要低得多,在200 mg/L时其生长受到显著抑制。[结论]考虑到高浓度卡那霉素对蛋白核小球藻生长的抑制作用,最终确定用50 mg/L卡那霉素连续3次除菌处理的方式建立蛋白核小球藻的无菌培养体系;同时,测得纯化培养的蛋白核小球藻藻液在685 nm处具有最大吸收峰,在此波长下小球藻的细胞浓度与吸光值呈线性相关,可用A685来估测蛋白核小球藻浓度。  相似文献   

7.
通过在自制培养基中加入不同浓度的Pb2+,研究水环境中重金属Pb2+污染对谷皮菱形藻生长和叶绿素a含量的影响,并在光学显微镜下观察细胞形态变化,研究该藻对铅离子(Pb2+)的耐受性。试验结果表明,谷皮菱形藻对Pb2+的耐受性较强。Pb2+浓度低于5 mg/L,促进其生长;Pb2+浓度为10 mg/L时,对其无明显影响;Pb2+浓度大于50 mg/L时,明显抑制其生长,且藻细胞出现异常现象;96 h EC50值为27.26 mg/L。Pb2+浓度小于10 mg/L时,藻叶绿素a含量均较高,与正常生长情况相似;Pb2+浓度大于50 mg/L时,叶绿素a含量明显降低。Pb2+浓度较低时,藻细胞体形态正常,且运动能力很强,Pb2+浓度大于50 mg/L时,藻细胞体出现畸形,颜色加深,两端由圆形变成方形,且运动能力很弱。  相似文献   

8.
表面活性剂CTAC和STAB对蛋白核小球藻的毒作用   总被引:1,自引:0,他引:1       下载免费PDF全文
采用室内培养法考察了十六烷基三甲基氯化铵(CTAC)和十八烷基三甲基溴化铵(STAB)对蛋白核小球藻(Chlorella pyrenoidosa)的生长状况、蛋白质含量、叶绿素含量、脂质过氧化丙二醛(MDA)含量以及超氧化岐化酶(SOD)活性的影响,进而分析了CTAC和STAB对小球藻的毒作用机理.结果表明,CTAC和STAB对蛋白核小球藻的生长抑制效应受浓度和时间的影响显著,STAB对蛋白核小球藻的毒性大于CTAC,且CTAC和STAB作用4 d内,藻细胞蛋白质、叶绿素含量以及SOD活性均先上升后下降,MDA含量逐渐下降.根据5种指标变化与CTAC(或STAB)之间呈现的浓度-效应关系和时间-效应关系推测,表面活性剂对藻细胞的最初攻击点是通过改变其细胞膜膜脂分子的水溶性破坏小球藻的细胞膜,表面活性剂通过刺激细胞产生活性氧自由基引起脂质及其他生物大分子的氧化损伤可能是其对小球藻产生毒害效应的主要机制.  相似文献   

9.
[目的]探讨不同浓度钇(Y3+)对铜绿微囊藻(Microcystis aeruginosa)生长特性的影响和藻细胞超微结构的变化。[方法]以铜绿微囊藻FACHB912为试材,采用生理和生化方法研究了不同浓度的外源稀土Y3+(0、0.05、0.10、0.20、0.50、1.00、2.00、5.00和10.00 mg/L)对藻细胞生长的影响,并比较了藻细胞叶绿素a、丙二醛(MDA)的含量及其超微结构随不同浓度Y3+胁迫的变化。[结果]相对低浓度Y3+(0.05~0.20 mg/L)对铜绿微囊藻生长表现出明显促进作用,而高浓度Y3+(0.50~10.00 mg/L)则部分或完全抑制了藻细胞的正常生长;Y3+对铜绿微囊藻的叶绿素a合成、MDA也有影响。叶绿素a随Y3+浓度的提高呈现先上升后下降的变化趋势;低浓度Y3+(0.05~0.20 mg/L)对铜绿微囊藻MDA含量无显著影响,然而随着Y3+浓度的增加和胁迫时间的延长,藻细胞中MDA含量显著上升。[结论]一定低浓度的Y3+可有效促进铜绿微囊藻的生长和藻细胞叶绿素a等生理指标的上升。  相似文献   

10.
为有效解决农村生活污水带来的环境污染问题提供参考依据,采用双因素(污水浓度与绿藻种类)试验,研究蛋白核小球藻、四尾栅藻、短带鞘藻和刚毛藻4种藻类在不同污染负荷污水中的生长状况及其对氮、磷的去除效果。结果表明:在低污染负荷下,蛋白核小球藻叶绿素a含量的增长率高于其他藻种(处理第8天除外),短带鞘藻和刚毛藻在培养4 d后叶绿素a含量较大幅度增长。蛋白核小球藻处理第4天,TP去除率达95.1%,出水TP达一级A排放标准。第8天时四尾栅藻和短带鞘藻对TN、NH4+-N去除率分别达83.6%、77.0%和75.7%、76.3%。在高污染负荷下,四尾栅藻生长稳定,而蛋白核小球藻、短带鞘藻和刚毛藻在处理初期需短暂适应,第4天后蛋白核小球藻生长速度较快;第8天时蛋白核小球藻去除TP效果最好,去除率达73.6%,四尾栅藻对TN和NH4+-N控制效果明显,去除率分别达88.7%和75.4%。  相似文献   

11.
To study the growth effects of differing concentrations of bensulfuron-methyl on Chlorella pyrenoidosa and to evaluate the ecological risk, the effects of bensulfuron-methyl on the growth and the content change of chlorophyll and protein in Chlorella pyrenoidosa were studied through 96 h acute toxicity tests. Bensulfuron-methyl accelerated the growth of algae at lower concentrations (〈 1 mg L^-1) with content increase of chlorophyll or protein, and it inhibited the growth of algae at higher concentrations (〉 5 mg L^-1). The content of chlorophyll or protein in algae cells reduced with the increasing concentration of bensulfuron-methyl, exhibiting the good concentration-effect relationship. The 96 h-EC50 of bensulfuronmethyl upon the algae was 15.7 mg L^-1 Bensulfuron-methyl has inhibiting effect on the growth of Chlorella pyrenoidosa and is low in toxicity.  相似文献   

12.
余游  冉奎林  王应军  张涛  高鹏 《现代农业科技》2011,(17):239-241,243
以BG11培养基作为对照,通过室内模拟试验研究了不同质量浓度的Nd3+对铜绿微囊藻生长及生理特性的影响。结果表明,Nd3+浓度为0.1~2.0 mg/L时对铜绿微囊藻的生长具有不同程度的促进作用,且能增加叶绿素a和可溶性蛋白的含量,提高超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)的活性,降低丙二醛(MDA)的含量。当Nd3+浓度为1.0 mg/L时,藻细胞密度、叶绿素a和可溶性蛋白含量、POD和CAT的活性均达到峰值,MDA含量降至最低;当Nd3+为2.0 mg/L时,SOD活性达到最大值。而Nd3+浓度达5.0~20.0 mg/L时则会抑制铜绿微囊藻的生长,除MDA含量升高外,其余指标均降低。Nd3+浓度达到40.0 mg/L时,铜绿微囊藻的生长基本停止。  相似文献   

13.
盐酸金霉素及其光降解产物对淡水藻生长的影响   总被引:1,自引:0,他引:1  
王梦禅  钟文英  陈建秋 《安徽农业科学》2011,39(7):4155-4157,4161
[目的]研究四环素类抗生素进入水环境后的生态风险及影响藻类生长的环境因子。[方法]研究不同浓度盐酸金霉素及经不同时间紫外光降解的盐酸金霉素对2种藻(铜绿微囊藻和斜生栅藻)生物量和叶绿素a含量的影响。[结果]除0.5 mg/L盐酸金霉素对铜绿微囊藻有促进作用外,其他浓度对2种藻都有一定程度的抑制作用,且随浓度的增加抑制作用加强,10 mg/L的盐酸金霉素也不能完全抑制2种藻的生长;经紫外光降解的盐酸金霉素对2种藻的作用不同,铜绿微囊藻生物量和叶绿素a含量大小依次是:经紫外光降解2 h〉1 h〉4 h〉0 h〉8 h〉12 h〉24 h,斜生栅藻生物量和叶绿素a含量则是对照组最大,试验组随降解时间的延长而降低。[结论]盐酸金霉素对淡水藻类的影响与其浓度及藻种有关,经紫外光降解的盐酸金霉素对淡水藻类的影响则与降解时间及藻种有关。  相似文献   

14.
Cd(Ⅱ)、Zn(Ⅱ)对新月菱形藻生长及生化成分的影响   总被引:1,自引:0,他引:1  
研究了不同浓度的Cd(Ⅱ)、Zn(Ⅱ)对新月菱形藻Nitzschia closterium生长及细胞内蛋白质、多糖、叶绿素等生化成分含量的影响。结果表明:新月菱形藻对两种重金属均有一定的耐受力;Cd(Ⅱ)、Zn(Ⅱ)浓度分别低于3.0、1.0 mg/L时对新月菱形藻的生长没有显著影响(P〉0.05),高于此浓度则产生明显的抑制作用(P〈0.05);Zn(Ⅱ)对新月菱形藻胞内蛋白质含量的影响不明显(P〉0.05),Cd(Ⅱ)能抑制新月菱形藻蛋白质的合成;低于3.0 mg/L的Cd(Ⅱ)、Zn(Ⅱ)能促进新月菱形藻胞内多糖和叶绿素的合成。  相似文献   

15.
研究了波吉卵囊藻(Oocystis borgei)对Cu2+和Zn2+的耐受力、吸附率和吸附量的作用规律。结果表明:Cu2+和Zn2+对波吉卵囊藻的生长和叶绿素a含量影响显著(P<0.05)。Cu2+和Zn2+含量的升高,对波吉卵囊藻生长的抑制增大,使叶绿素a含量下降;当Cu2+和Zn2+的含量分别小于0.001 mg/L和0.010 mg/L时,对波吉卵囊藻的生长和叶绿素a含量增加有一定的促进作用;Cu2+和Zn2+对波吉卵囊藻生长的96h-EC50分别为0.229 mg/L和17.390 mg/L。Cu2+含量为1.000mg/L和Zn2+含量为50.000 mg/L的组合,对波吉卵囊藻生长的抑制率为103.881%。Cu2+对波吉卵囊藻的毒性大于Zn2+。波吉卵囊藻对Cu2+和Zn2+有较好的吸附效果,当藻细胞含量为2.291×108ind/L时,对Zn2+的吸附率为81.444%;含量为2.891×108ind/L时,对Cu2+的吸附率为52.521%;吸附量分别为9.469 mg/g(5.208×10-9mg/ind)和2.914 mg/g(1.603×10-9mg/ind),对波吉卵囊藻不会产生明显毒性。  相似文献   

16.
【目的】探讨外源水杨酸对铜绿微囊藻生长及光合系统的影响,为将水杨酸应用于除藻剂研发提供参考依据。【方法】通过人工培养的方法,利用分光光度计和各类试剂及试剂盒等对经不同浓度(0.02、0.04、0.06、0.08、0.10和0.12 g/L)水杨酸处理铜绿微囊藻的各指标进行测定,包括生长抑制率、叶绿素a、藻胆蛋白及总可溶性蛋白含量。【结果】水杨酸浓度越高,对铜绿微囊藻的抑制作用越明显,以0.12 g/L水杨酸的抑制率最高,且抑制作用随时间的延长而不断增强,48 h后抑制率达95.66%。经0.10 g/L水杨酸处理后,铜绿微囊藻的叶绿素a、藻胆蛋白及总可溶性蛋白含量基本维持在初始水平;0.12 g/L水杨酸能有效抑制铜绿微囊藻的叶绿素a含量,促使铜绿微囊藻中的藻蓝蛋白(PC)含量相对降低、别藻蓝蛋白(APC)含量相对上升,但藻红蛋白(PE)含量基本维持在初始水平。【结论】水杨酸通过抑制铜绿微囊藻的叶绿素a等光合色素,阻遏其对光的捕获及吸收,扰乱藻胆蛋白各组分构成,从而致使藻类生长受抑,甚至死亡。即藻类叶绿素a是水杨酸抑制铜绿微囊藻生长的一个作用位点。  相似文献   

17.
段晓宇  汪维双  杨红  唐敏 《安徽农业科学》2012,40(15):8422-8423,8426
[目的]研究不同浓度的硝酸镧和硝酸铈对细茎石斛组培苗生长的影响。[方法]将不同浓度硝酸镧和硝酸铈添加于细茎石斛培养基中,观察其对组培苗生长、生根和叶绿素含量的影响,确定培养基中添加稀土硝酸盐的最佳浓度。[结果]低浓度稀土硝酸盐能促进组培苗生长,其中0.2 mg/L硝酸镧和0.2~0.4 mg/L硝酸铈的促进效果最佳。高浓度稀土硝酸盐对细茎石斛组培苗生长表现为负效应,甚至导致死亡。两稀土硝酸盐对叶绿素含量影响差异较大,硝酸镧(除0.2 mg/L)降低了石斛组培苗叶绿素b和总叶绿素的含量,且对叶绿素a的促进仅见于0.2 mg/L;低浓度硝酸铈(0.2~1mg/L)均能增加叶绿素a、叶绿素b和总叶绿素含量,高浓度则抑制。[结论]低浓度稀土硝酸盐能促进组培苗的生长;高浓度稀土硝酸盐抑制组培苗的生长,甚至导致死亡。  相似文献   

18.
[目的]探讨芘胁迫对玉米幼苗生长及生理指标的影响。[方法]通过水培试验,研究了4个浓度(0、0.5、1.0和2.0mg/L)的芘对2种玉米市祥1号(敏感品种)和广甜3号(耐性品种)幼苗生长及生理指标的影响。[结果]在试验浓度范围内,随芘浓度的升高,市祥1号叶绿素a和叶绿素b含量呈先升高后降低的趋势,相对生长量和绝对生长速率呈下降趋势,根系和叶片丙二醛(MDA)含量呈上升趋势;广甜3号相对生长量、绝对生长速率和叶绿素a含量呈先上升后下降趋势,叶绿素b和根系MDA含量呈上升趋势,叶片MDA含量呈下降趋势。与对照相比,市祥1号在0.5~1.0mg/L芘处理时叶绿素a和叶绿素b含量显著增加,芘浓度≥2.0mg/L时则显著降低,芘浓度≥1.0mg/L时根系和叶片MDA含量显著增加,而相对生长量和绝对生长速率显著降低;广甜3号在芘浓度≥1.0mg/L时叶绿素a和叶绿素b含量显著增加。芘浓度与敏感品种市祥1号的相对生长量和绝对生长速率呈显著负相关,与根系MDA含量呈显著正相关;芘浓度与耐性品种广甜3号叶绿素b含量和根系MDA含量呈显著正相关。[结论]为玉米苗期的管理措施提供了依据。  相似文献   

19.
为明确钾对西洋参幼苗生理特性的影响,运用水培试验技术,在霍格兰营养液基础上,设置4个钾浓度梯度为处理,分别为0,0.6,2.0,6.0 mmol/L,探索钾胁迫对西洋参幼苗叶片光合特性、碳氮代谢以及活性氧代谢的影响。结果表明:叶绿素a、叶绿素b和叶绿素总量均随着钾浓度的增加呈现先增加后降低的变化趋势,并在2.0 mmol/L的浓度下达到峰值,分别为12.88,6.96,19.84 mg/g。根系活力随着钾浓度的增加而逐渐增加,高钾浓度处理组比缺钾处理组西洋参根系活力高36.91%。缺钾显著降低了西洋参幼苗叶片的可溶性糖和可溶性蛋白含量。随着钾浓度的降低西洋参幼苗叶片MDA含量逐渐升高,SOD、POD和CAT等保护酶类的活性逐渐增强。低浓度的钾导致西洋参幼苗光合作用、根系活力和碳氮代谢等生理指标的下降以及膜脂过氧化作用的增强,从而抑制了西洋参幼苗的健康生长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号