首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The results of an analysis of more than 60,000 atmospheric measurements of carbon monoxide taken over 3(1/2) years at Cape Meares, Oregon (45 degrees N, 125 degrees W), indicate that the background concentration of this gas is increasing. The rate of increase, although uncertain, is about 6 percent per year on average. Human activities are the likely cause of a substantial portion of this observed increase; however, because of the short atmospheric lifetime of carbon monoxide and the relatively few years of observations, fluctuations of sources and sinks related to the natural variability of climate may have affected the observed trend. Increased carbon monoxide may deplete tropospheric hydroxyl radicals, slowing down the removal of dozens of man-made and anthropogenic trace gases and thus indirectly affecting the earth's climate and possibly the stratospheric ozone layer.  相似文献   

2.
Trace gases have been measured, by electron-capture gas chromatography and gas chromatography-mass spectrometry techniques, at the South Pole (SP) in Antarctica and in the U.S. Pacific Northwest (PNW) ( approximately 45 degrees N) during January of each year from 1975 to 1980. These measurements show that the concentrations of CCl(3)F, CCl(2)F(2), and CH(3)CCl(3) have increased exponentially at substantial rates. The concentration of CCl(3)F increased at 12 percent per year at the SP and at 8 percent per year in the PNW; CCl(2)F(2) increased at about 9 percent per year at both locations, and CH(3)CCl(3) increased at 17 percent per year at the SP and 11.6 percent per year at the PNW site. There is some evidence that CCl(4) ( approximately 3 percent per year) and N(2)O (0.1 to 0.5 percent per year) may also have increased. Concentrations of nine other trace gases of importance in atmospheric chemistry are also being measured at these two locations. Results of the measurements of CHClF(2)(F-22), C(2)Cl(3)F(3)(F-113), SF(6), C(2)-hydrocarbons, and CH(3)Cl are reported here.  相似文献   

3.
Nitrous oxide (N(2)O) and methane (CH(4)) are chemically reactive greenhouse gases with well-documented atmospheric concentration increases that are attributable to anthropogenic activities. We quantified the link between N(2)O and CH(4) emissions through the coupled chemistries of the stratosphere and troposphere. Specifically, we simulated the coupled perturbations of increased N(2)O abundance, leading to stratospheric ozone (O(3)) depletion, altered solar ultraviolet radiation, altered stratosphere-to-troposphere O(3) flux, increased tropospheric hydroxyl radical concentration, and finally lower concentrations of CH(4). The ratio of CH(4) per N(2)O change, -36% by mole fraction, offsets a fraction of the greenhouse effect attributable to N(2)O emissions. These CH(4) decreases are tied to the 108-year chemical mode of N(2)O, which is nine times longer than the residence time of direct CH(4) emissions.  相似文献   

4.
马占相思人工林土壤温室气体排放日变化规律研究   总被引:1,自引:0,他引:1  
【目的】探索马占相思Acacia mangium人工林土壤温室气体排放日变化规律,确定最佳观测时间。【方法】采用静态箱-气相色谱法,对华南地区马占相思人工纯林土壤3种温室气体CO_2、CH_4、N_2O通量进行连续观测。【结果】马占相思人工林土壤3种温室气体具有明显的日变化特征,马占相思人工林土壤为CO2和N2O的排放源及CH_4的吸收汇,其通量日变化幅度分别为:401.33~555.59 mg·m~(-2)·h~(-1)、24.50~34.72μg·m~(-2)·h~(-1)和-10.96~-41.88μg·m~(-2)·h~(-1)。地表CO_2、CH_4通量和5 cm深土壤温度呈极显著(P0.01)或显著(P0.05)相关,地表N_2O通量同温度的相关性不显著。【结论】通过对矫正系数分析,综合考虑3种温室气体以及取样的可操作性,华南地区马占相思人工林雨季的最佳观测时间为09:00时左右。  相似文献   

5.
崇明岛稻麦轮作系统稻田温室气体排放研究   总被引:7,自引:3,他引:4  
通过静态箱-气相色谱法,研究了崇明岛稻麦轮作地水稻生长季及收割后休耕期(2011年6月至2011年11月)温室气体CO2、CH4和N2O的排放、吸收规律及交换量,并运用增温潜势进行了温室效应估算。3种温室气体通量在水稻不同生长阶段有明显差异:稻田除成熟收割期外,其他期均表现为CH4排放源,并在分蘖期达到最大值;N2O除幼苗期表现为汇,其他期均为排放源,并在拔节期达到最大值。温室效应分析得出:水稻田温室气体以CH4和N2O排放为主,二者对全球温室效应的贡献为3.255×103kgCO2·hm-2;由于光合作用,稻田表现为对CO2固定,固定量为2.462×103kgCO·2hm-2;崇明水稻生长季排放温室气体综合GWP值为793kgCO·2hm-2,为温室气体排放源。  相似文献   

6.
Photochemical calculations indicate that if NH(3) outgassed from Titan it should have been converted to a dense N(2) atmosphere during the lifetime of the satellite. A crucial step in the process involves a gas phase reaction of N(2)H(4) with H. The most favorable conditions for this step would be the intermediate production of a CH(4)-H(2) greenhouse capable of raising the gas temperature to 150 degrees K. Subsequently about 20 bars of N(2) could have evolved. The pressure-induced opacity of 20 bars of N(2) should suffice to explain the recently measured 200 degrees K surface temperature. Unlike the situation on Jupiter, NH(3) is not recycled on Titan by reactions involving N(2) or N(2)H(4). This may explain the failure of recent attempts to detect NH(3) in the upper atmosphere of Titan.  相似文献   

7.
二氧化碳(CO_2)、甲烷(CH_4)、氧化亚氮(N_2O)是3种主要的温室气体,温带森林土壤是CO_2、N_2O重要的源,是CH_4重要的汇,以前的研究大部分都关注这3种温室气体在时间上的变化,而很少开展在空间变化上的研究。2014年10月至2015年10月,采用静态箱-气相色谱法对秦岭南坡火地塘林区不同海拔(海拔1 560、1 585、1 963、2 040、2 160m,分别为落叶阔叶林、温性针叶林、温性针叶林、寒温性针叶林、落叶阔叶林)森林土壤CO_2、CH_4和N_2O通量进行了为期1a的监测。结果表明,CO_2全年都为排放,季节波动较大,总体上随海拔增加排放量减少,海拔由低到高(包括3种林型)年排放量依次为:19.12、12.53、11.78、16.95、14.87t·hm-2;CH_4全年主要为吸收,在非生长季出现排放,季节波动幅度较大,总体上随海拔增加吸收量增加,海拔由低到高年通量依次为:-2.57、-3.60、-5.94、-5.59、-3.92kg·hm-2;N_2O全年以排放过程为主,存在吸收现象,季节波动幅度不大,海拔对其通量影响不明显,海拔由低到高年排放量依次为:0.23、0.62、0.63、0.60、0.95kg·hm-2。土壤温度是影响CO_2、N_2O通量的关键因子。5个样地森林土壤CO_2通量与土壤铵态氮含量(20~40cm)显著相关(P<0.05)。高的土壤NH_4^+含量对CH_4的吸收有抑制作用。在冻融交替期,降雨对N_2O的通量有明显影响。海拔由低到高5个样地的GWP(全球增温潜势)分别为:119.13、12.65、11.85、17.02t·hm-2和15.07t·hm-2。  相似文献   

8.
甲烷(CH4)和氧化亚氮(N2O)是重要的两种温室气体,近一个世纪以来,大气中这两种气体浓度持续升高,进而引起温室效应明显加剧和气候变暖等极端气候的频繁出现.稻田生态系统是大气CH4和N2O的重要源.稻田温室气体的排放受土壤性质、气候条件及人为活动等因素的交互作用和综合调控,CH4和N2O排放量与各因素的变异程度、敏感程度密切相关.全面综述了影响稻田温室气体排放的因子及温室气体减排措施的研究进展,可为制定我国稻田温室气体减排措施、促进农业可持续发展以及生态环境协调发展提供参考.  相似文献   

9.
Pronounced increases in total gaseous mercury (TGM) in the near surface marine atmosphere were found in the equatorial region (4 degrees N to 10 degrees S) of the Pacific Ocean at 160 degrees W. The atmospheric enhancement of TGM corresponded closely to sea-surface manifestations of equatorial upwelling as reflected in measured changes of temperature and nutrient concentrations as well as to variations of reactive mercury in surface seawater. The elevated atmospheric TGM levels most probably result from oceanic mercury evasion associated with upwelling and increased biological production that occurs in the equatorial Pacific Ocean.This evidence of sea-to-air mercury transfer supports model predictions of an oceanic source of atmospheric mercury and suggests that marine-derived mercury emissions should occur in other biologically productive regimes.  相似文献   

10.
采用野外静态箱—气相色谱法,对三江平原沼泽湿地6—9月不同水层下CH4、N2O的排放进行了同步对比研究,并探讨了影响气体排放的主要影响因子。结果表明,不同水层下的CH4和N2O排放具有明显的时空变化特征。CH4排放高峰期在7、8月,N2O主要排放期在6、7月。40 cm水层下的CH4排放强度最高,平均为34.54mg.m-2.h-1;20、60 cm水层下的CH4排放强度居中,平均分别为17.18、13.02 mg.m-2.h-1;0 cm水层下的CH4排放强度最低,平均7.69 mg.m-2.h-1,N2O排放强度最高,为0.072 mg.m-2.h-1;20、40 cm水层下的N2O排放强度相似,平均分别为0.053、0.050 mg.m-2.h-1;60 cm水层下的排放强度最小,平均为0.026 mg.m-2.h-1。相关分析表明,CH4的排放通量与40 cm水深及5 cm地温呈显著或极显著正相关,与其它各土壤温度之间的相关性因水层不同有所差异;N2O排放通量与地表0、40 cm水深呈显著负相关,20 cm水层下的N2O排放通量与5 cm地温呈显著正相关。CH4、N2O的排放通量与大气温度及地表温度均不相关。  相似文献   

11.
Atmospheric gases trapped in polar ice at the firn to ice transition layer are enriched in heavy isotopes (nitrogen-15 and oxygen-18) and in heavy gases (O(2)/N(2) and Ar/N(2) ratios) relative to the free atmosphere. The maximum enrichments observed follow patterns predicted for gravitational equilibrium at the base of the firn layer, as calculated from the depth to the transition layer and the temperature in the firn. Gas ratios exhibit both positive and negative enrichments relative to air: the negative enrichments of heavy gases are consistent with observed artifacts of vacuum stripping of gases from fractured ice and with the relative values of molecular diameters that govern capillary transport. These two models for isotopic and elemental fractionation provide a basis for understanding the initial enrichments of carbon-13 and oxygen-18 in trapped CO(2), CH(4), and O(2) in ice cores, which must be known in order to decipher ancient atmospheric isotopic ratios.  相似文献   

12.
Concentrations of the halocrbons CCl(3)F (F-11), CCl(2)F(2) (F-12), CCl(4), and CH(3)CCl(3), methane (CH(4)), and nitrous oxide (N(2)O) over the decade between 1975 and 1985 are reported, based on measurements taken every January at the South Pole and in the Pacific Northwest. The concentrations of F-11, F-12, and CH(3)CCl(3) in both hemispheres are now more than twice their concentrations 10 years ago. However, the annual rates of increase of F-11, F-12, and CH(3)CC1(3) are now considerably slower than earlier in the decade, reflecting in part the effects of a ban on their nonessential uses. Continued increases in these trace gas concentrations may warm the earth and deplete the stratospheric ozone layer, which may cause widespread climatic changes and affect global habitability.  相似文献   

13.
长期不同施肥类型对稻田甲烷和氧化亚氮排放速率的影响   总被引:14,自引:1,他引:14  
以湖南双季稻田长期不同施肥类型为研究对象,利用静态箱法测定了晚稻期间4种不同施肥方式下(无肥区、化肥区、秸秆区和习惯性施肥区)CH4和N2O的排放速率,并计算了其综合温室效应。结果表明,晚稻生育期内CH4的排放速率呈先升高后降低的变化趋势,习惯性施肥区和无肥区插秧15d达到最高峰,化肥区和秸秆还田区则推迟5 d到来;晒田期间稻田表现为甲烷的汇。无肥区和秸秆还田区N2O在整个测定期只有一个排放高峰,化肥区和习惯性施肥区N2O排放有两个峰值,分别在插秧后15和35d。秸秆区和习惯性施肥区CH4温室效应较大,化肥区和习惯性施肥区N2O温室效应较大,其中综合温室效应以秸秆区最大,习惯性施肥区和化肥区次之,无肥区最低。  相似文献   

14.
The oxidizing capacity of the global atmosphere is largely determined by hydroxyl (OH) radicals and is diagnosed by analyzing methyl chloroform (CH(3)CCl(3)) measurements. Previously, large year-to-year changes in global mean OH concentrations have been inferred from such measurements, suggesting that the atmospheric oxidizing capacity is sensitive to perturbations by widespread air pollution and natural influences. We show how the interannual variability in OH has been more precisely estimated from CH(3)CCl(3) measurements since 1998, when atmospheric gradients of CH(3)CCl(3) had diminished as a result of the Montreal Protocol. We infer a small interannual OH variability as a result, indicating that global OH is generally well buffered against perturbations. This small variability is consistent with measurements of methane and other trace gases oxidized primarily by OH, as well as global photochemical model calculations.  相似文献   

15.
Sze ND 《Science (New York, N.Y.)》1977,195(4279):673-675
Present anthropogenic emissions of CO are apparently large enough to perturb the natural CO-OH-CH(4) cycle, which plays a crucial role in the self-cleansing processes in the troposphere. A significant increase in global concentrations of CO, CH(4) CH(3)Cl, and other trace gases may result from a decrease in the OH concentration caused by continued CO emissions. Even if the CO emissions were maintained at the present rate, increases in CO and CH(4) by the year 2025 might be as large as 50 and 25 percent, respectively. The time constants associated with the perturbations of the CO-OH-CH(4) cycle are of the order of a few decades. Perturbation of this cycle may also indirectly affect stratospheric chemistry.  相似文献   

16.
Atmospheric CO2: principal control knob governing Earth's temperature   总被引:1,自引:0,他引:1  
Ample physical evidence shows that carbon dioxide (CO(2)) is the single most important climate-relevant greenhouse gas in Earth's atmosphere. This is because CO(2), like ozone, N(2)O, CH(4), and chlorofluorocarbons, does not condense and precipitate from the atmosphere at current climate temperatures, whereas water vapor can and does. Noncondensing greenhouse gases, which account for 25% of the total terrestrial greenhouse effect, thus serve to provide the stable temperature structure that sustains the current levels of atmospheric water vapor and clouds via feedback processes that account for the remaining 75% of the greenhouse effect. Without the radiative forcing supplied by CO(2) and the other noncondensing greenhouse gases, the terrestrial greenhouse would collapse, plunging the global climate into an icebound Earth state.  相似文献   

17.
The European Project for Ice Coring in Antarctica Dome C ice core enables us to extend existing records of atmospheric methane (CH4) and nitrous oxide (N2O) back to 650,000 years before the present. A combined record of CH4 measured along the Dome C and the Vostok ice cores demonstrates, within the resolution of our measurements, that preindustrial concentrations over Antarctica have not exceeded 773 +/- 15 ppbv (parts per billion by volume) during the past 650,000 years. Before 420,000 years ago, when interglacials were cooler, maximum CH4 concentrations were only about 600 ppbv, similar to lower Holocene values. In contrast, the N2O record shows maximum concentrations of 278 +/- 7 ppbv, slightly higher than early Holocene values.  相似文献   

18.
Nitrous oxide in the earth's atmosphere contributes to catalytic stratospheric ozone destruction and is also a greenhouse gas component. A precise budgetary accounting of N(2)O sources has remained elusive, and there is an apparent lack of source identification. One source of N(2)O is as a by-product in the manufacture of nylon, specifically in the preparation of adipic acid. Characterization of the reaction N(2)O stoichiometry and its isotopic composition with a simulated industrial adipic acid synthesis indicates that because of high rates of global adipic acid production, this N(2)O may account for approximately 10 percent of the increase observed for atmospheric N(2)O.  相似文献   

19.
山地及丘陵地带的坡位变化对温室气体的排放具有重要影响且存在很大的不确定性,选取华北石质山区不同坡位栓皮栎人工林下土壤为对象,采用室内培养法将不同坡位过筛土壤含水率调至60%的田间持水量(WHC)并培养256h,测定分析了土壤温室气体累积排放/吸收量、土壤理化性质及其相关性。结果表明,该地区不同坡位土壤整体表现为CO2、N2O的源,CH4的汇。坡位变化通过改变栓皮栎人工林植被的生长状况以及林下土壤的物理结构、速效养分和矿质氮含量的分布,间接影响了土壤温室气体的排放与吸收。受土壤矿质氮和速效养分含量等影响,土壤累积CO2排放量呈坡上>坡下>坡中的趋势,累积N2O排放量与累积CH4吸收量均呈坡上>坡中>坡下的趋势,坡上土壤温室气体增温潜势显著高于坡下与坡中土壤(P<0.05)。相关性分析表明,土壤累积CO2排放量与土壤硝态氮(NO3^--N)含量显著正相关(P<0.05),累积N2O排放量与土壤容重(BD)显著正相关,累积CH4吸收量与土壤pH、铵态氮(NH4^+-N)、全氮(TN)及溶解性有机碳(DOC)显著相关,且累积CO2排放量与累积N2O排放量呈显著正相关。因此,在该地区山地及丘陵地带进行人工林种植并评估土壤固碳效应时,应当高度重视坡上土壤温室气体累积排放与吸收的变化。  相似文献   

20.
MJ Prather 《Science (New York, N.Y.)》1998,279(5355):1339-1341
Nitrous oxide (N2O) is one of the top three greenhouse gases whose emissions may be brought under control through the Framework Convention on Climate Change. Current understanding of its global budget, including the balance of natural and anthropogenic sources, is largely based on the atmospheric losses calculated with chemical models. A representative one-dimensional model used here describes the photochemical coupling between N2O and stratospheric ozone (O3), which can easily be decomposed into its natural modes. The primary, longest lived mode describes most of the atmospheric perturbation due to anthropogenic N2O sources, and this pattern may be observable. The photolytic link between O3 and N2O is identified as the mechanism causing this mode to decay 10 to 15 percent more rapidly than the N2O mean atmospheric lifetime, affecting the inference of anthropogenic sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号