首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在生理条件下,植物铵的吸收主要由定位于细胞膜上的铵转运蛋白(ammonium transporter,AMT)介导完成,研究模式植物拟南芥AMT的功能特性及调控机制对于解析植物的铵吸收过程具有重要意义。本研究克隆了拟南芥AtAMT1.3并将其在蛙卵异源系统中表达,电生理结果表明,AtAMT1.3是一个典型的对铵有高度选择性、高亲和的铵吸收系统[Km=(25.5±3.2)μmmol/L]。同时,AtAMT1.3也能介导铵的同系物甲基铵的吸收[Km=(3.3±0.2)mmmol/L],对铵和甲基铵的吸收具有浓度依赖性和电压依赖性。AtAMT1.3的铵转运能力不受p H值调控,它的转运底物是NH_4~+,运输机制是NH4+单向运输。  相似文献   

2.
 【目的】阐明水稻铵转运蛋白基因OsAMT1;4 和OsAMT5的编码蛋白特征、功能和表达。【方法】采用生物信息学技术,揭示目的基因的编码蛋白特征;通过铵离子吸收缺陷的酵母突变体功能互补技术,鉴定上述基因编码蛋白的功能;采用RT-PCR技术,研究基因的表达特征。【结果】OsAMT1;4和OsAMT5的编码阅读框为1 497 bp和1 377 bp,分别编码498和458个氨基酸残基。OsAMT1;4和OsAMT5均具有11个跨膜域,分别归属与AMT1和AMT2亚家族。OsAMT1;4和OsAMT5均具有使NH4+吸收缺陷的酵母突变体重新恢复吸收NH4+的能力。OsAMT5在叶中特异表达,随NH4+浓度增加表达增强;在不同NH4+浓度和时间处理中,根、叶均未检测到OsAMT1;4的转录本。【结论】OsAMT1;4和OsAMT5在水稻中具有吸收或转运NH4+的功能。OsAMT5为叶特异表达,OsAMT1;4的表达受到NH4+因子外其他因素的调节。  相似文献   

3.
4.
NO-3不仅是植物从土壤中吸收的重要无机氮素形式,还是在植物体内转移的氮素形式,植物依赖硝酸盐转运体(Nitrate transporters,NRTs)参与吸收和转运NO-3.目前,许多学者主要对NRT1.1、NRT1.2、NRT2.1进行大量研究,而对其他硝酸盐转运体的功能及调控机制研究甚少.植物体作为一个整体,吸收、转运硝酸盐是一个连续的过程,在此过程中,各硝酸盐转运体间如何相互补充、相互协调,仍有待进一步研究.文章通过对NRTs蛋白的结构、生物学功能和调控机制进行综述,旨在阐明植物吸收、转运NO-3的生理机制,为通过基因工程手段提高作物氮素利用效率的研究提供理论依据.  相似文献   

5.
药物转运体介导种类不同、结构各异的药物跨越细胞膜,影响药物在各组织器官中的浓度以及系统暴露量,不但是影响药效的关键因素,也是重要的药物?药物相互作用位点。人体中关键的药物转运体属于ABC结合盒 (ATP-binding cassette) 超家族或溶质载体 (Solute carrier) 超家族,分别介导细胞对药物的外排和吸收,两者协同作用,共同决定细胞内的药物浓度。作为膜蛋白,药物转运体在翻译后需要经过一系列复杂而精细的调控才能到达作用位点,发挥功能。此外,人体在药物的摄取过程中需要作出快速应对,因此往往以翻译后修饰的方式进行响应;而病理条件下转运体的功能也可能因细胞中各翻译后调控机制的非常态化而受到影响。明确药物转运体的翻译后处置过程,对于解析转运体药物转运的分子机制、阐明遗传多态性造成的个体药物响应差异有重要意义。本文对目前药物转运体的翻译后加工和修饰的相关研究进行了综述,也对在这些调控过程中发挥关键作用的转运体基序和位点进行了总结。  相似文献   

6.
从铵转运蛋白(AMT)的系统进化、蛋白结构功能及生理生化特征等方面人手,对植物AMT1与AMT2两大亚类成员的最新研究进展进行综述.植物中AMT1与AMT2一定程度上存在分工合作,共同调节植物对铵态氮的吸收,维持植物体内NH4+的稳定并使土壤中铵态氮得到高效利用,可为农作物氮素吸收机制提供较深入的理论依据,对农作物增产增收具有重要意义.  相似文献   

7.
小分子热激蛋白(small heat shock proteins, sHSP),作为一种分子伴侣,在植物逆境胁迫响应中发挥着重要的作用。本研究克隆了水稻中2个编码小分子热激蛋白的基因 Os16.9A和 Os16.9B, Os16.9A和 Os16.9B编码的150个氨基酸,相似性高达99%。 Os16.9A和 Os16.9B的转录方向相反,2个基因的起始密码之间的距离为2.6 kb,它们的启动子均含有CAAT-box、TATA-box、GATA-box以及与热激等胁迫应答有关的顺式作用元件HSE和ACGT aterd1; Os16.9A的启动子还包含响应冷、干旱应答的顺式作用元件LTRE,这些顺式作用元件呈不对称分布,推测这2个基因间的序列具有双向启动子的功能,且这2个基因可能受胁迫诱导表达。该研究将为进一步研究水稻 Os16.9A和 Os16.9B基因的表达调控及其功能提供参考。  相似文献   

8.
鲨烯合酶(Squalene synthase,SQS)是ABA生物合成途径上游支路的一个关键酶。本研究克隆了406 bp的SQS基因片段,将其分别正向和反向插入干扰载体p YLRNAi.5中,经过酶切鉴定证实成功构建了干扰载体p YLRNAi-SQS,通过农杆菌介导法转入水稻品种Kasalath中,PCR初步鉴定获得了20株转基因阳性植株,进一步通过半定量RT-PCR分析,阳性转基因材料与野生型Kasalath相比,Os SQS3都有不同程度的下调,而Os SQS7变化不明显。证明转入的SQS基因只对Os SQS3起干涉效果,而对Os SQS7无作用,推测水稻中两个SQS基因可能存在不同的作用机制。本研究为进一步研究水稻中Os SQS3和Os SQS7各自的生物学功能奠定了基础,同时也为研究SQS调控ABA的生物合成提供了研究材料。  相似文献   

9.
【目的】高盐胁迫是影响作物产量的主要因素之一,谷子(Setaria italica L.)具有耐逆性强的特点,从谷子中筛选耐盐基因对于利用基因工程的手段培育耐盐作物新品种具有重要意义。【方法】分析谷子AP2/ERF类转录因子类基因SiANT1在豫谷一号幼苗期在高盐、低氮、PEG模拟干旱处理条件下的表达模式;进而利用农杆菌转化法将SiANT1转入模式作物水稻品种Kitaake;分别用0.9%盐水和自来水浸泡过表达SiANT1水稻和野生型Kitaake的种子,观察其萌芽期的表型并统计发芽率;用含0.9%Na Cl的Hogland营养液室内处理水稻幼苗10 d,65℃烘48 h之后称量干重;同时将其种植在大田,在水稻孕穗前用0.9%盐水灌溉一次,统计成熟后过表达SiANT1水稻各株系和野生型的单株籽粒重、株高、单株分蘖数,对其耐盐性进行评价;利用定量Real time-PCR方法,验证分析转基因水稻株系中SiANT1及其可能的下游基因的相对表达情况。【结果】谷子SiANT1蛋白(XP004985124.1,SiANT1)属于AP2亚族,与高粱(XP021318293.1,Sb ANT1)和玉米(XP008658933.1,Zm AP2)亲缘关系较近;豫谷一号中SiANT1的表达受高盐胁迫(100 mmol·L-1 Na Cl)诱导;将SiANT1和LP0471118-Bar-ubi-EDLL载体连接,利用农杆菌转化法将SiANT1转入到水稻基因组中,筛选得阳性T0植株,繁殖两代得T3代种子;自来水浸泡下,过表达SiANT1水稻种子萌发率和野生型相差不大,萌芽率为90%以上;0.9%盐水浸泡下,过表达SiANT1水稻种子萌发明显受到抑制,与野生型相比,过表达SiANT1水稻种子露白推迟,但最终(处理120 h)萌芽率达到80%以上;室内水稻苗期用0.9%Na Cl处理后,过表达SiANT1水稻的单株干重较受体Kitaake增重14.11%—37.42%,在1%水平上呈显著差异;大田水稻成熟后过表达SiANT1株系单株籽粒重较受体Kitaake增产56.12%—76.58%,在5%水平上呈显著差异,单株分蘖数增多、株高增加,但与野生型无显著差异;半定量RT-PCR分析表明,过表达SiANT1的3个水稻株系都在RNA水平上表达SiANT1;定量Real time-PCR结果表明,过表达SiANT1的3个水稻株系间SiANT1的相对表达量有所差异,但较受体而言,都极显著增加,并且其内源耐盐相关基因Os SOS1和Os ZFP182的相对表达量分别较受体提高1.1—1.7倍和1.6—2.3倍。【结论】Os SOS1和Os ZFP182是耐盐相关基因已被证实,SiANT1具有一定的耐盐性,过表达SiANT1水稻可能是通过增加下游基因Os SOS1和Os ZFP182的表达从而提高耐盐性。  相似文献   

10.
NPR1是植物系统获得性(systemic acquired resistance,SAR)抗病反应中的关键基因,对植物的广谱抗性起重要调控作用。以玉米自交系"齐319"为材料,通过PCR方法克隆到一个玉米NPR1基因(命名为Zm NPR1)。序列分析结果显示Zm NPR1包含两个保守结构域POZ/BTB位点和Ankyrin repeat锚蛋白重复位点。蛋白质聚类分析表明Zm NPR1与水稻Os NPR2的同源性最高。亚细胞定位结果显示Zm NPR1定位于洋葱表皮细胞的细胞核中。半定量PCR结果显示,Zm NPR1和玉米防卫基因PAL(编码苯丙氨酸解氨酶)响应水杨酸、玉米矮花叶病毒和玉米小斑病原菌的诱导并显著上调表达;而Zm NPR1和PAL的表达水平受到茉莉酸甲酯的明显抑制。这表明Zm NPR1在玉米中参与到水杨酸介导的抗病反应通路。  相似文献   

11.
NO-3不仅是植物从土壤中吸收的重要无机氮素形式,还是在植物体内转移的氮素形式,植物依赖硝酸盐转运体(Nitrate transporters,NRTs)参与吸收和转运NO-3.目前,许多学者主要对NRT1.1、NRT1.2、NRT2.1进行大量研究,而对其他硝酸盐转运体的功能及调控机制研究甚少.植物体作为一个整体,吸收、转运硝酸盐是一个连续的过程,在此过程中,各硝酸盐转运体间如何相互补充、相互协调,仍有待进一步研究.文章通过对NRTs蛋白的结构、生物学功能和调控机制进行综述,旨在阐明植物吸收、转运NO-3的生理机制,为通过基因工程手段提高作物氮素利用效率的研究提供理论依据.  相似文献   

12.
CCHC型锌指结构蛋白Os ZFP参与调控水稻Oryza sativa侧根的生长发育,但其相关互作蛋白及调控机制未知。以水稻‘日本晴’‘Nipponbare’为试验材料,克隆了Os ZFP基因,利用Eco RI和Sal I酶切位点构建酵母双杂交钓饵表达载体p GBKT7+Os ZFP,验证该表达载体对酵母菌株Y2H无毒性及报告基因自激活现象;采用酵母双杂交技术,从已构建的水稻c DNA文库中筛选到1个阳性互作蛋白,经美国国家生物技术信息中心数据库(NCBI)同源性比对,鉴定为含有T-complex polypeptide 1(TCP-1)结构域的分子伴侣蛋白第7个亚基(Os06g0687700),命名为chaperonin containing TCP-1 eta subunit(CCT-eta),进而通过酵母一对一回复验证该互作蛋白。基于CCT-eta亚基与Os ZFP蛋白互作,推测分子伴侣蛋白亚基CCT-eta可能参与调控水稻侧根的生长发育。  相似文献   

13.
 PAL1是项目前期研究克隆的水稻内稃发育相关基因,为了进一步解释其调控水稻内稃发育的分子遗传机制,采实时用荧光定量PCR方法检测了PAL1基因在日本晴和(或)突变体水稻中的表达情况。在水稻的根、叶和幼穗中都检测到PAL1 mRNA,幼穗中表达水平高于根和叶,在突变体中的表达水平低于日本晴水稻;在孕穗期叶中的表达水平高于苗期叶;在成熟花器官中外稃、内稃、雄蕊和雌蕊均有表达,内稃器官中的表达水平最高。这些结果显示:PAL1在生殖生长阶段可能具有更重要的作用;在花器官发育中, PAL1基因的功很能可能是水稻内稃正常发育所必需;PAL1基因在所有器官中都表达,暗示该基因可能参与水稻多方面的发育调控,是水稻中一个重要的发育调控基因。  相似文献   

14.
植物β-半乳糖苷酶是一类与细胞壁重塑相关的糖苷水解酶,广泛分布于植物组织,参与多种生理生化过程,但水稻BGALs基因家族的亚细胞定位及其生物学功能尚不清楚。根据NCBI公布的水稻OsBGAL1的ORF序列设计引物,从日本晴叶片c DNA中扩增得到目的基因片段,构建了OsBGAL1-GFP融合表达载体,然后通过农杆菌介导的烟草瞬时表达系统对其进行亚细胞定位分析。激光共聚焦观察结果表明,与空载对照相比,水稻Os BGAL1蛋白主要定位于细胞壁,结合其生化活性,揭示其可能参与细胞壁多糖重塑。研究结果可为进一步研究其生物功能奠定基础。  相似文献   

15.
利用比较基因组学方法获得5个水稻二半乳糖甘油酯合成酶(Os DGD)同源基因;运用生物芯片分析,发现Os DGD参与对热胁迫和干旱胁迫的应答;采用实时定量PCR技术,分析5个Os DGD在热胁迫幼穗6~7期日本晴、9311和N22水稻剑叶中的表达特征,发现Os DGD1、Os DGD2和Os DGD3在耐热品种N22中的表达明显受到热胁迫诱导,由此推测,Os DGD可能参与了水稻的耐热信号传导。  相似文献   

16.
【目的】休眠是水稻重要的农艺性状。适当的休眠可以抑制水稻的穗发芽现象,是确保产量和品质的关键因素。然而,水稻休眠调控的基因及其调控网络仍需进一步研究。已知基因MODD编码未知功能的蛋白,负向调控水稻脱落酸信号和抗旱性,但其调控水稻休眠的功能未知。研究MODD在调控水稻休眠中的功能,有助于完善水稻休眠调控网络,同时为抗穗发芽遗传育种提供新的理论基础和种质资源。【方法】根据RGAP数据库公布的基因序列,构建MODD的CRISPR-Cas9敲除载体,通过农杆菌介导的遗传转化方法转化中花11(ZH11)愈伤组织,从而获得水稻转基因植株;利用PCR扩增、测序技术及qRT-PCR技术筛选并鉴定MODD敲除纯合系;根据2个突变系(KO-1和KO-2)的CDS得到突变系的氨基酸序列,然后,用DNAMAN对比ZH11和2个突变系(KO-1和KO-2)的蛋白序列;利用Linux系统筛选出MODD在水稻中的同源基因;取开花后35 d的种子,调查ZH11和敲除系的发芽率;利用酵母单杂和LUC试验验证MODD的上游基因。【结果】查找到水稻中有6个MODD的同源基因,分别为LOC_Os07g41160、LOC_O...  相似文献   

17.
GID1作为赤霉素(GA)受体蛋白,是GA信号通路的重要组成部分,其编码基因GID1在被子植物中已经被广泛克隆,但在针叶树种中的研究十分滞后。为了分离针叶树GA受体GID1基因并推测其功能,本研究以拟南芥GID1s序列为探针,在油松高质量参考转录组内筛选并鉴别出了油松GID1直系同源基因;基于该基因序列同源克隆了樟子松、白皮松、赤松GID1基因,通过BLAST获得了日本落叶松、火炬松、白云杉与挪威云杉的GID1-like基因;对针叶树GID1基因进行序列保守性、蛋白结构和组织表达活性分析。结果表明:针叶树种很可能只含有一个GID1基因,该基因在针叶树中具有很高的保守性;虽然与被子植物GID1之间的序列一致性较低,但其保持GA亲和活性所必需的氨基酸残基十分保守,与其下游DELLA蛋白相互作用的功能域与结构同样十分保守,推测其在针叶树GA信号转导中具有受体功能;表达分析显示GID1在挪威云杉不同组织和油松雌雄球花不同发育阶段间表达较为稳定,表明GID1可能广泛参与这些组织的发育过程,针叶树GA信号调控通路中GA受体的转录调控可能并不是核心调控机制。研究结果为GID1基因在针叶树生长发育过程中的分子调控机制研究奠定了基础。   相似文献   

18.
【 目 的】 分 析 水 稻(Oryza sativa) 小 分 子 热 激 蛋 白(Small heat shock protein,sHSP) 基 因Os02g0782500 对逆境胁迫和激素的响应模式,为进一步研究 Os02g0782500 在逆境胁迫和激素响应过程中的功能提供理论依据。【方法】在水稻‘中花 11’中克隆获得 Os02g0782500,并对其进行生物信息学分析;同时利用定量 PCR(qRT-PCR)技术分析 Os02g0782500 在水稻不同组织及不同激素和非生物胁迫处理下的表达模式。【结果】Os02g0782500 编码区全长为 519 bp,编码一个含有 HSP20 保守结构域的 sHSP。系统进化分析显示,Os02g0782500 与玉米等单子叶植物中的同源蛋白亲缘关系较近。顺式作用元件分析表明,Os02g0782500 的启动子区含有 28 个植物激素响应元件和 35 个环境胁迫响应元件。qRT-PCR 分析表明,Os02g0782500 在水稻叶片中的表达量最高;且 Os02g0782500 的表达受 6-BA、GA3、IAA、高温、低温、PEG6000 和 NaCl 的诱导,推测其在水稻非生物胁迫响应过程中具有重要作用。【结论】明确了 Os02g0782500 的表达受高温、低温、6-BA、GA3和 IAA 等外界因素调控,推测 Os02g0782500 可能通过 IAA 等激素信号转导途径参与水稻的非生物胁迫响应。  相似文献   

19.
[目的]肉桂酸-4-羟化酶(C4H)是苯丙烷合成途径次生代谢的重要酶,通过对不同化感潜力水稻中4个C4H基因:Os01g0820000、Os02g0467000、Os02g0467600、Os05g0320700的表达分析,研究它在不同化感潜力水稻中的区别,有助于揭示水稻化感抗(耐)性的内在机制。[方法]选用非化感水稻Lemont和化感水稻PI312777,进行水杨酸(SA)和茉莉酸(JA)处理,通过q-PCR对4个C4H基因的表达进行分析比较,同时以水稻叶片水浸提液测定其对稗草根生长的影响。[结果]经过JA和SA处理的非化感水稻Lemont叶片水浸提液对稗草根生长的抑制率分别提高了22%和18%,而化感水稻PI312777的抑制率分别提高了40%和28%。q-PCR结果表明,JA和SA处理后,Os01g0820000和Os02g0467000在2种水稻中相对表达量相似;而Os02g0467600和Os05g0320700两个基因在PI312777中相对表达量上调程度均高于Lemont,表明这2个基因在PI312777中可能更多的参与到C4H的合成代谢。[结论]JA和SA处理后的2种水稻化感潜力增强,Os02g0467600和Os05g0320700在PI312777和Lemont中表达差异较大,因此推测这2个基因是造成2种水稻化感潜力不同的重要因素。  相似文献   

20.
正2019年8月25日,《植物生物技术杂志》(Plant Biotechnology Journal)在线发表了中国农业科学院生物技术研究所谷晓峰研究团队最新研究成果。他们发现了组蛋白去乙酰化复合体成员Os SFL1,可以介导组蛋白去乙酰化修饰,并通过光周期途径调控水稻的开花机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号