首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
【目的】探明棉铃对位叶氮浓度对棉纤维比强度形成的影响。【方法】以纤维比强度差异较大的3个棉花品种为材料,设置不同施氮量处理以形成不同的棉铃对位叶氮浓度,研究棉纤维加厚发育过程中棉铃对位叶氮浓度的动态变化及其与纤维中糖类物质及纤维比强度间的关系。【结果】棉铃对位叶氮浓度随铃龄的变化符合幂函数曲线YN=αt-β;在棉纤维加厚发育过程中,纤维中蔗糖、β-1,3-葡聚糖和纤维素含量随棉铃对位叶氮浓度的增加呈抛物线型变化,蔗糖、纤维素累积与纤维比强度形成的最佳棉铃对位叶氮浓度变化曲线相吻合,β-1,3-葡聚糖累积与纤维比强度形成的最佳对位叶氮浓度差异较大。【结论】棉铃对位叶氮浓度反映了棉铃发育的氮营养状况,在棉纤维加厚发育过程中,均存在一个有利于蔗糖、β-1,3-葡聚糖、纤维素累积及高强纤维形成的最佳对位叶氮浓度。棉纤维中较高的蔗糖和纤维素含量有利于纤维比强度的形成;棉纤维加厚发育前期较高的β-1,3-葡聚糖含量有利于纤维比强度的形成,后期则对纤维比强度形成的作用降低。不同品种纤维比强度形成的对位叶适宜氮浓度差异较大,进一步说明对位叶氮浓度影响棉花纤维加厚发育和比强度的形成。  相似文献   

2.
以美棉33B品种为材料,于2005年在黄河流域黄淮棉区的江苏徐州(117°11'E,34°15'N)和河南安阳(114°13'E,36°04'N)设置施氮水平(0、240和480 kg.hm-2)试验,研究不同开花期棉铃(伏前桃、伏桃、早秋桃和晚秋桃)氮素累积及棉铃对位叶氮浓度对施氮量的响应。结果表明:不同开花期棉铃氮素累积动态变化可用Logistic方程拟合。铃壳、棉籽、纤维及单铃氮素累积受施氮水平和开花期的影响。不同施氮水平下,以240 kg.hm-2处理最有利于氮素累积,而不施氮和施氮480kg.hm-2均不利于棉铃氮素累积。棉铃氮素累积特征参数(快速累积起止时间、快速累积持续期及平均累积速率)在伏桃时期最协调,氮素累积量最多;晚秋桃时期最不协调,氮素累积量最少;伏前桃和早秋桃介于上述两者之间。棉铃对位叶适宜的氮浓度有利于协调源库关系,促进棉铃氮素积累。  相似文献   

3.
 【目的】明确果枝部位、温光复合因子和施氮量对棉纤维比强度形成过程的定量关系及两者的补偿效应,探明棉纤维比强度形成的生态基础。【方法】以杂交棉(科棉1号)和常规棉(美棉33B)为材料,于2005年在江苏南京(118°50′E, 32°02′N,长江流域下游棉区)和江苏徐州(117°11′E, 34°15′N,黄河流域黄淮棉区)设置分期播种(4月25日、5月25日)和施氮量(0、240、480 kg N•hm-2)试验,研究棉株果枝部位、温光复合因子(用纤维加厚发育期的累积辐热积PTP表示)和施氮量对纤维比强度形成的影响。【结果】(1)棉株果枝部位显著影响纤维比强度的形成,并与温光复合因子存在协同效应。棉株中部果枝铃发育期温光条件适宜,其纤维比强度显著大于其它果枝部位铃;随温光条件变差,纤维比强度在果枝部位间的差异不明显。(2)棉纤维比强度随花后天数的增加可分为快速增加和稳定增加两个时期,PTP与纤维比强度快速增加期的日均增长速率(VRG)线性正相关、与快速增加持续期(TRG)线性负相关,与稳定增加期的日均增长速率(VSG)、持续期(TSG)及最终棉纤维比强度(Strobs)呈开口向下的抛物线关系。当PTP达到291 MJ•m-2左右时,纤维比强度Strobs最大(科棉1号、美棉33B分别为34.8、31.9 cN•tex-1),品种间差异主要源于纤维比强度稳定增加期(中科棉1号和美棉33B的VSG、TSG分别为0.32 cN•tex-1•d-1、21 d和0.18 cN•tex-1•d-1、24 d)。(3)纤维比强度达到最大值所需的PTP随施氮量增加而减小,施氮量可通过棉铃对位叶叶氮浓度(NA)影响纤维比强度的形成,棉花氮素营养对温光复合因子存在补偿效应,当PTP高于104 MJ•m-2时,240 kg N•hm-2下的NA更适宜于比强度的形成;PTP低于此值时,增加施氮量可对温光复合因子进行补偿,以利于高强纤维形成。【结论】棉株果枝部位显著影响纤维比强度的形成,且与温光复合因子存在互作效应;温光复合因子、施氮量均显著影响棉纤维比强度的形成,且后者对前者存在补偿效应;棉纤维比强度形成过程可分为快速增加和稳定增加两个阶段,后者是品种间纤维比强度形成差异的主要阶段。  相似文献   

4.
【目的】探明棉株生理年龄对棉铃生物量和氮素累积的影响及其与棉铃品质的关系。【方法】2005年在江苏徐州(117°11′E,34°15′N)、2007年在河南安阳(114°13′E,36°04′N)设置分期播种(4月25日和5月25日)试验,使棉株不同果枝部位棉铃发育处于相同的温度和不同的棉株生理年龄条件下,研究其生物量和氮素累积的特征及其与棉籽、棉纤维品质的关系。【结果】不同生理年龄条件下,铃壳、棉籽、纤维及单铃最终总生物量和氮素的累积量差异较小,但棉铃各部分生物量和氮素的累积动态存在显著差异:棉株生理年龄较小时(下部果枝),棉铃发育前期生物量和氮素快速累积起始时间较早、速率较高、持续时间较短,而在棉株生理年龄较大时(中部果枝)棉铃生物量和氮素快速累积起始时间较晚、持续时间较长,整个累积过程较为平缓;棉株中部果枝铃纤维比强度显著高于下部果枝铃,而其它主要棉纤维及棉籽品质指标均差异不显著。【结论】棉株生理年龄的变化不改变棉铃最终生物量和氮素累积量,但显著改变棉铃各器官生物量和氮素的累积特征。纤维比强度是对棉株生理年龄或棉铃生物量累积特征最为敏感的指标,棉株中部果枝铃纤维生物量和氮素的平缓累积可能是其纤维比强度较下部铃高的主要原因。  相似文献   

5.
 【目的】研究氮素营养对棉株主要源库关系的调节作用。【方法】以转基因抗虫杂交棉中棉所29(CCRI29)为材料,在田间进行不同氮肥水平(高氮:225.0 kg•ha-1;中氮:112.5 kg•ha-1;低氮:0 kg•ha-1)试验,较为系统地研究了CCRI29中、下部铃-叶系统生理特性及铃重的空间分布。【结果】(1)与中氮、低氮相比,高氮促进了中部果枝叶生长后期叶绿素的合成,延长了叶片功能期。(2)氮肥水平对棉花器官中碳水化合物代谢有重要影响,低氮促进了果枝叶中碳水化合物的积累,中氮水平下碳水化合物代谢较为协调。(3)施入氮肥可以增加POD、SOD酶活性。不同部位棉铃对位叶的SOD、POD酶活性变化趋势一致,下部棉铃对位叶中各处理间比较为:中氮>高氮>低氮,而中部棉铃对位叶各处理间顺序为高氮>中氮>低氮。【结论】不同氮肥水平对棉花的生长发育有一定调节效应。中氮水平可以改善棉花的早衰现象,源库关系较为协调,从而促进了铃重的增加。  相似文献   

6.
 【目的】研究日均最低气温对棉纤维中蔗糖代谢、纤维素沉积和纤维比强度形成的影响,揭示棉纤维强力变化的机理。【方法】通过分期播种,使棉铃发育处于不同的低温环境下,研究不同低温水平对新疆棉纤维发育过程中蔗糖代谢中相关物质含量变化、调控蔗糖代谢的关键酶活性变化的影响及与纤维素沉积的关系。【结果】正常播期条件下,棉株中部棉铃纤维中蔗糖合成酶(SS)和蔗糖磷酸合成酶(SPS)活性高,蔗糖转化彻底,纤维素累积时间长且累积平稳,最终纤维素含量高、纤维强力增加。播期推迟,棉铃发育过程中夜间温度降低,纤维中SPS活性下降、酸性转化酶(AI)和碱性转化酶(NI)活性升高,造成果糖含量明显上升,影响纤维素的沉积。【结论】棉纤维加厚期<15.3℃的日均最低气温影响了蔗糖代谢关键酶活性的变化,引起蔗糖转化率下降,果糖循环速率减缓并在纤维中大量富集。  相似文献   

7.
设施栽培条件下番茄适宜的氮素管理和灌溉模式   总被引:7,自引:2,他引:5  
 【目的】探索设施栽培条件下番茄适宜的氮素管理和灌溉模式。【方法】试验设4个处理:对照、传统氮素管理、优化氮素管理和推荐氮素管理。比较不同处理间的番茄产量、氮肥追施量、氮素损失量、化学氮肥和灌溉水农学效益等。【结果】(1)对照处理未追施化学氮肥,产量仍达到较高水平,冬春季出现了随着氮肥追施量的增加而减产的现象。(2)传统氮素管理每季的氮肥追施量为600 kgN?hm-2,灌溉量约7 500 m3?hm-2,不合理的水氮管理造成每年1 416 kgN?hm-2的表观氮素损失;与传统处理相比,推荐氮素管理每季番茄氮肥追施量减少50%,全年氮肥损失量减少32.2%;优化氮素管理两季番茄氮肥追施量为314和124 kgN?hm-2,灌溉量分别为3 900和4 550 m3?hm-2,全年的氮肥损失量减少38.6%。(3)传统、优化和推荐氮素管理全年的化学氮肥农学效益为0、24.9和0.3 kgFW?kg-1N,传统和优化灌溉的灌溉水农学效益分别为12.2和23.2 kg FW?m-3。(4)优化氮素管理模式每年可减少4 000元/hm2的氮肥和灌溉用电费用。【结论】本试验条件下,氮肥追施量已不是番茄产量进一步提高的主要限制因素。氮素追施调控结合小管出流及夏季休闲时施用小麦秸秆和氰氨化钙的水氮管理是较优的番茄氮素管理和灌溉模式。  相似文献   

8.
研究了钾肥运筹对高品质棉杂交种科棉3号和常规种科棉4号不同部位棉铃对位叶养分分配的影响。结果表明,通过合理的钾肥运筹能有效地促进高品质棉株中、上部棉铃对位叶中养分的合理分配,从而促进棉株上部与中部棉铃铃重的增加和纤维的发育,有利于提高整株铃重和纤维品质。高品质棉杂交种科棉3号钾肥运筹以基肥和花铃肥的比例为5∶5、常规种科棉4号基肥和花铃肥的比例为7∶3时,更有利于棉株中上部的棉铃对位叶中养分的分配,从而增加铃重,缩小上部与中部的铃重差异。  相似文献   

9.
 【目的】研究棉纤维发育过程中的糖代谢生理特征对氮素的响应及其与纤维比强度形成的关系,探索改善棉纤维比强度的生理调控技术途径。【方法】以美棉33B(AC-33B)和科棉1号(KC-1)为材料,设置大田氮素水平0 kg N?hm-2(缺氮)、240 kg N?hm-2(适氮)和480 kg N?hm-2(高氮)试验,研究3个氮素水平下棉纤维发育过程中糖代谢的重要物质(蔗糖和β-1,3-葡聚糖)含量变化、调节糖代谢的相关酶(蔗糖酶、蔗糖合成酶、磷酸蔗糖合成酶及β-1,3-葡聚糖酶)活性的动态变化和纤维比强度形成的关系。【结果】两年试验结果表明,在240 kg N?hm-2水平下,棉纤维中的蔗糖酶活性最高,可长时间地为棉纤维发育提供一个充足的物质能量库,蔗糖合成酶、磷酸蔗糖合成酶活性最高,促使纤维发育过程中铃龄5~24 d的蔗糖下降量及24~31 d蔗糖增长量最大,并且全铃期内转化率高且转化彻底,β-1,3-葡聚糖酶活性高,使含量及峰值高的β-1,3-葡聚糖中后期转化彻底,因此,此水平下棉纤维发育过程中蔗糖和β-1,3-葡聚糖含量的上述动态变化,有利于纤维素平缓累积且累积期长,与高强纤维的形成需要的纤维素累积特征相吻合;而在0 kg N?hm-2水平下,棉纤维发育过程的糖代谢生理特征与上述表现刚好相反,最终纤维素累积过快且累积期短,形成低强纤维;480 kg N?hm-2水平则介于上述两者之间。【结论】棉纤维发育过程糖类物质代谢生理特征在0、240、480 kg N?hm-2水平间存在明显差异,该差异是导致纤维最终比强度形成不同的重要因素。在240 kg N?hm-2水平下,上述糖代谢相关酶活性变化及糖类物质供给更为优化,更有利于高强纤维的形成。  相似文献   

10.
氮素营养水平对棉花衰老的影响及其生理机制   总被引:12,自引:3,他引:9  
 【目的】探讨在大田条件下,土壤氮素含量水平对棉花生长过程中叶片生理生化指标、干物质积累量、组织含水量、叶面积载荷量的影响,为调控棉花早衰和提高棉花产量提供依据。【方法】设置3个氮素水平(纯N:低氮 0 kg?hm-2;中氮189.50 kg?hm-2;高氮395.0 kg?hm-2)处理,研究棉花衰老过程中主茎功能叶的生理生化指标变化,植株的干物质积累量、组织含水量及载荷量特征。【结果】盛铃末期为处理间生理生化指标产生差异的起始时期。与中氮、高氮相比,从盛铃末期开始,低氮处理棉花的叶绿素含量、蛋白质含量、SOD和POD活性降低,组织含水量和干物质积累量快速下降,而MDA含量、叶面积载荷量快速升高,加速了棉株衰老的进程。增加氮素营养能够明显提高叶片的生理活性,提高组织含水量和干物质积累量,延缓衰老。【结论】在本试验条件下,盛铃末期是棉花叶片生理功能从旺盛生理功能到衰退的转折时期。土壤氮素含量与棉花衰老密切相关,低氮处理加速降低叶片的生理活性,造成早衰;中氮和高氮水平能够延缓棉花衰老现象。  相似文献   

11.
【目的】 滨海盐碱旱地条件下,研究不同水平减施氮肥配合增施叶面肥对棉花光合特征、产量和品质的影响,分析增施叶面肥对棉花氮肥减施的补偿效应,研究棉花稳产前提下的氮肥减施补偿策略,为滨海盐碱旱地棉花减肥增效规模化种植提供数据支持和理论依据。【方法】 设置施氮量分别为0(CK)、60(N1)、90(N2)、120(N3)、150(N4)、180(N5)、225(N6) kg/hm2 7个水平,其中N1~N4喷施叶面肥4次,测定处理植株农艺性状、主茎叶SPAD值、光合特征指标、籽棉产量和纤维品质指标。【结果】 花铃期处理棉花主茎叶SPAD值随氮肥施用量的减少而降低,增施叶面肥后各减氮处理主茎叶SPAD值差异不显著;主茎叶净光合速率(Pn)和蒸腾速率(Tr)随施氮量的减少而降低,胞间CO2浓度(Ci)逐渐增加;施氮量225~60 kg/hm2时,籽棉产量、单株铃数、单铃重和衣分随氮肥施用量减少而降低,其中施氮量90~150 kg/hm2增施叶面肥处理与180 kg/hm2处理间的籽棉产量差异不显著;纤维断裂比强度和整齐度随氮肥用量的减少先升高再降低,马克隆值逐渐升高,对纤维长度和伸长率没有显著影响。【结论】 盐碱旱地减施氮肥配合增施叶面肥,对棉花主茎叶片光合速率、籽棉产量及纤维品质的负面影响有一定减缓作用,“减氮肥+增叶肥”施肥模式有助于产量稳定,减少氮肥投入,降低环境污染。  相似文献   

12.
【目的】研究不同施氮量对机采棉株型塑造、冠层结构和产量的影响,分析适宜冀南棉区机采棉种植的氮肥用量。【方法】采用田间小区试验,设置0、60、120、180、240、300、360和420 kg/hm2共8个氮肥施用梯度,研究不同施氮量对冀南棉区机采棉株高、果枝数、果枝始节高度和节位、果枝长度、果枝节数、果枝夹角、吐絮率、叶面积指数、透光率、叶倾角和产量的影响。【结果】随着施氮用量的增加,棉花株高、果枝数、果枝长度和果枝夹角呈先升高后降低趋势,果枝始节高度呈先降低后升高趋势,棉花吐絮率随着施氮量的增加呈降低趋势,其中N3~N8没有显著差异。与不施氮相比,施氮处理可以增加棉花叶面积指数,降低叶倾角,使冠层有效光截获量显著增加。随着施氮量的增加,棉花单株铃数呈先增加后降低趋势,单铃重呈增加趋势,棉花籽棉产量随氮肥用量增加而增加,N6~N8差异不显著。【结论】氮肥用量会显著影响棉花适宜机采农艺性状,影响棉花株型塑造、群体冠层结构和产量,冀南棉区机采棉的氮肥推荐量为300 kg/hm2。  相似文献   

13.
【目的】结合北疆气候条件和植棉特点,研究不同氮肥用量对杂交棉叶片光合特性和产量的调节效应,探讨北疆杂交棉氮肥运筹措施,为杂交棉的高产栽培提供理论依据。【方法】以杂交棉标杂A_1为研究对象,通过设置不同用量氮肥处理,研究不同施氮量对杂交棉叶片光合速率、叶绿素含量、叶簇倾角、叶面积指数等指标变化的影响。【结果】随施氮量增加,杂交棉单株结铃数和单铃重呈现先增加后减少的趋势。在试验条件下,施氮量在374.7~375.6 kg/hm~2时,杂交棉籽棉产量达到最大。施氮量不足或过量,对叶片光合速率、叶绿素含量、叶簇倾角和叶面积指数均产生不同程度的影响,从而影响到光合物质的生产和转移,最终影响到产量。【结论】适宜的施氮量是杂交棉保持较高的光合速率、合理的叶簇倾角和叶面积指数,并获得高产的关键。  相似文献   

14.
目的】研究不同减量追施氮肥运筹对棉花地上部干物质积累、分配和产量的影响。【方法】5个处理施基肥量一致,以大田常规追施氮肥量为对照,在常规追施氮肥量的基础上减施10%、20%、30%、40%作为减量追施氮肥处理,分析减量追施氮肥对棉花地上部干物质积累、分配及产量的影响。【结果】常规追施氮肥量、减施10%追施氮肥量和减施20%追施氮肥量处理的棉花地上部干物质积累量、结铃数和籽棉产量均显著高于减施30%追施氮肥量和减施40%追施氮肥量处理,并且各处理生殖器官干物质分配比重按大小依次为减施10%追施氮肥量处理、常规追施氮肥量处理、减施20%追施氮肥量处理、减施30%追施氮肥量处理、减施40%追施氮肥量处理;追施氮肥量、棉花地上部干物质积累量及籽棉产量两两之间存在显著的线性正相关性。【结论】大田常规追施氮肥基础上减施10%追施氮肥量不会显著降低籽棉产量,对棉花的结铃数和铃重、衣分也均未显著降低,同时不会影响棉花地上部干物质积累量,且有利于棉株生殖器官分配比重的增加。  相似文献   

15.
【目的】 研究1膜3行条件下氮肥配比及种植株距对棉花生长发育及产量的影响并选出最优组合。【方法】 以新陆中 88 号为供试品种,采用裂区试验设计,主区为3种氮肥追施策略,副区为10、8、6 cm 3个株距。分析不同处理对棉花生长发育、棉铃时空分布、蕾铃脱落率及产量与纤维品质的影响。【结果】 氮肥均施的处理N2铃数多,铃数比N1、N3高8.7% ~23.3%、8.82% ~36.5%,其棉铃时空分布更理想,蕾铃脱落率低从而增加产量,且N2处理纤维品质显著优于其他2个处理。综合收获株数及单株结铃数等产量构成因素可得,氮肥均施处理N2及株距8 cm(D2)的处理N2D2皮棉产量最高,为3 025.65 kg/hm2。【结论】 在1膜3行模式下,氮肥均施及株距8 cm的处理N2D2能取得高产,适合在生产中推广应用。  相似文献   

16.
目的】研究氟节胺与缩节胺施用时间对棉花株型及其经济性状的影响,筛选出棉花化学封顶和前期调控塑形最佳时间。【方法】采用裂区试验设计,以棉花不同时间封顶施药为主区,封顶前不同时间施药调控为副区,人工打顶为对照,测定棉花株高、叶枝长、果枝长、节间长、结铃数、单铃重、实收产量以及纤维品质指标。【结果】棉田施用2次氟节胺与缩节胺进行棉花调控和封顶。棉花株高和叶枝增长量均低于人工打顶,并且2次施药间隔期越长则棉花株高增长量越少,倒1、倒2、倒3主茎节间距显著短于对照(P<0.05),棉花倒1、倒2、倒3、倒4果枝长度较对照缩短61.57%~70.57%。棉花不同部位结铃数表现为下部铃>中部铃>上部铃,且主要集中于棉花下部。随着2次施药间隔期缩短,棉花单株铃数、单铃重有增加趋势,而7月15日封顶棉花的单铃重呈减少趋势,但与对照(CK0-5、CK0-10、CK0-15)无差异(P>0.05)。【结论】2次施药间隔期对棉花纤维品质指标也有一定影响。在6月30日和7月10日2次施药可以达到棉花化学封顶效果,有助于高光效群体形成。  相似文献   

17.
Nitrogen(N) fertilizer experiments were conducted to investigate the optimal subtending leaf N concentration for fiber strength,and its relationship with activities of key enzymes(sucrose synthase and β-1,3-glucanase) and contents of key constituents(sucrose and β-1,3-glucan) involved in fiber strength development in the lower,middle and upper fruiting branches of two cotton cultivars(Kemian 1 and NuCOTN 33B).For each sampling day,we simulated changes in fiber strength,activity of sucrose synthase and β-1,3-glucanase and levels of sucrose and β-1,3-glucan in response to leaf N concentration using quadratic eqs.;the optimal subtending leaf N concentrations were deduced from the eqs.For the same fruiting branch,changes in the optimal leaf N concentration based on fiber development(DPA) could be simulated by power functions.From these functions,the average optimal subtending leaf N concentrations during fiber development for the cultivar,Kemian 1,were 2.84% in the lower fruiting branches,3.15% in the middle fruiting branches and 3.04% in the upper fruiting branches.For the cultivar,NuCOTN 33B,the optimum concentrations were 3.04,3.28 and 3.18% in the lower,middle and upper fruiting branches,respectively.This quantification may be used as a monitoring index for evaluating fiber strength and its related key enzymes and constituents during fiber formation at the lower,middle and upper fruiting branches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号