首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 153 毫秒
1.
提出以剪力滞平衡微分方程的齐次解作为梁段单元的位移模式,建立了考虑弯、扭、剪力滞耦合的有限段模型.利用刚度法以及功能原理推导出梁段的单元刚度矩阵和荷载列阵,并编制计算程序.制作了一两跨连续曲线箱梁有机玻璃实验模型,分别进行了在集中荷载和均布荷载作用下的剪力滞效应试验研究,其结果验证了方法的正确性.研究表明,曲线箱梁内侧正应力比外侧的大.  相似文献   

2.
为研究预应力混凝土箱梁剪力滞效应在纵向梁长方向上的影响长度,采用通用有限元分析软件ANSYS,建立有限元分析模型,讨论了剪力滞系数沿梁纵向分布规律,重点分析了宽跨比、跨高比、预应力大小以及集中荷载等参数对箱梁剪力滞效应纵向影响长度的影响。研究结果表明,无论箱梁顶板还是底板,其剪力滞系数最大值均在荷载施加的截面,远离荷载施加的截面最大剪力滞系数迅速减小。荷载引起的剪力滞效应纵向影响长度较小,仅在荷载施加位置附近影响较大。随着宽跨比增大,箱梁剪力滞效应纵向影响长度均越来越明显,且越来越剧烈;跨高比的改变对箱梁顶板剪力滞效应影响较为剧烈,但其给箱梁造成的纵向影响不太明显。预应力以及集中荷载的改变对箱梁剪力滞效应影响较小,对箱梁剪力滞效应纵向影响长度的改变程度也较微弱。  相似文献   

3.
为研究荷载横向变位和纵向多点加载工况下,箱梁荷载施加截面的剪力滞效应,以 ANSYS 有限元分析软件为平台,并将荷载在纵向分为单点加载与双点加载2种情况,在横向分为对称加载、偏心加载和中心加载3种情况。分析了单点加载与双点加载情况下加载截面处的剪力滞效应,对比研究了单点加载与双点加载工况下跨中截面剪力滞效应。结果表明,在单点及双点加载情况下,中心加载对箱梁顶板剪力滞效应影响最大,偏心加载次之,对称加载相对最小;在单点加载情况下,偏心加载对箱梁底板剪力滞效应影响最大,中心加载次之,对称加载相对最小;单点加载情况下箱梁跨中顶板及底板剪力滞效应均明显强于双点加载情况下箱梁跨中顶板及底板剪力滞效应。  相似文献   

4.
波形钢腹板PC组合箱梁力学性能优点众多,在桥梁工程中应用前景广阔,但其"剪力滞效应"导致的局部应力集中问题一直困扰着桥梁建设者,处理不当,将带来极大的安全隐患。因此,对比研究波形钢腹板PC组合箱梁(波形梁)与普通预应力混凝土箱梁(普通梁)剪力滞变化规律尤为重要。参照工程实例,分别制作2片单箱单室波形梁和普通梁,按一定荷载步分级加载,在不同工况下对其力学性能进行对比研究。试验结果表明,不同集中荷载对波形梁和普通梁支座处顶底板的纵向正应力大小沿横截面均有不同程度的变化,梁跨中无明显变化;预应力的施加有利于减弱波形梁和普通梁顶板的剪力滞效应,但普通梁的剪力滞效应的减弱程度高于波形梁顶板;预应力的施加导致波形梁和普通梁底板的剪力滞效应增大,普通梁剪力滞效应的增大程度弱于波形梁底板。  相似文献   

5.
本文推导了压弯杆的无剪力分配法基本公式,在高层刚架的分析中,仍然保持大量减少未知量的特点。在国外高层建筑设计中,一般只考虑轴向变形对内力的影响。从本文计算表明,在横向及竖向荷载共同作用下,随着层数的增加,轴向力效应也是一个值得重视的问题。  相似文献   

6.
本文在现行m法假设基础上,导得了考虑轴向集中荷载、桩自重、桩侧摩阻力及横向荷载综合作用下柔性桩的分析解.文中计算指出:当桩的自由长度及轴向荷载较大时,p-△效应对桩身弯矩的影响是不容忽视的.本文解答弥补了现行m法理论不计轴力的不足.此外,本文从弯矩、位移等效原理出发,得到了基桩地面以上部分在轴向集中荷载及沿轴向均布荷载作用下桩顶位移及地面处桩身弯矩的计算式,该解答亦可用于各类悬臂梁柱的静力计算.  相似文献   

7.
本文探讨了横向荷载位置对箱梁剪力滞效应的影响,给出了该问题的全部公式,并引入了一个参数“e”,通过它可以找到出现负剪力滞效应和无荷载效应等两种情况所对应的横向荷载位置。  相似文献   

8.
应用板壳有限元理论,构造了薄壁板通用壳单元,考虑弯扭的耦合作用,对箱梁的剪力滞效应进行了分析.算例验证结果表明,该方法结果可靠,具有较高的精确度,适用于结构的细部分析.  相似文献   

9.
应用板壳有限元理论,构造了薄壁板通用壳单元,考虑弯扭的耦合作用,对箱粱的剪力滞效应进 行了分析。算例验证结果表明,该方法结果可靠,具有较高的精确度,适用于结构的细部分析。  相似文献   

10.
连续墙梁的应力分布规律   总被引:2,自引:0,他引:2  
本文通过有限元分析 ,研究了多跨连续墙梁在竖向均布荷载作用下墙梁各点的应力分布规律 ,总结出多跨连续墙梁拉杆拱的受力模型 ,为连续墙梁内力计算和承载力计算打下良好的基础 ,而进一步制定规范建立可靠的理论依据。  相似文献   

11.
The homogeneous solution of the differential equation for the shear lag in thin walled box girders is taken as the displacement pattern of finite element. Based on the variational principle, a finite segment method is proposed for analysing the shear lag  相似文献   

12.
考虑地基的抗剪能力和梁的剪切变形影响,建立了双参数地基Timoshenko梁的平衡方程,导出了初参数解和传递矩阵法,利用初参数解建立了有限元列式.当地基的抗剪劲度为0时,双参数地基可退化成Winkler地基,当梁的抗剪劲度无穷大时,Timoshenko梁可退化成Euler梁.利用本文有限元法分析了双参数地基倒T形Timoshenko梁在两端集中荷载作用、双参数地基变截面阶梯形Timoshenko梁在集中力、集中力偶和均布荷载作用下的受力问题.算例结果表明,本文计算结果与其他方法结果完全一致,证明所推导的初参数解、传递矩阵法和有限元刚度的正确性.  相似文献   

13.
根据试验结果,提出了钢筋砼薄腹梁中砼抗剪承载力的计算方法,并在平面应力状态下,用力学原理进行了分析  相似文献   

14.
根据新的斜角非自由切削模型,本文提出了新的剪切面积计算方法。其特点是包括影响剪切面积的所有因素,并以简单代数形式表达。这种方法将有助于切屑流出方向的判断和切削力的理论计算。  相似文献   

15.
采用连续化方法导出了短肢剪力墙结构在任意高度侧向集中荷载的作用下的侧移曲线方程,由此得到该结构的抗侧移柔度系数,进而得出结构的抗侧移刚度矩阵。应用抗侧移刚度矩阵对各种整体性系数和肢强系数的短肢剪力墙结构进行了动力特性分析,研究其对结构动力特性的影响。结果表明,当肢强系数不变时,随整体性系数的增加,短肢剪力墙的前两阶振型的振动周期显著减小,而其他高阶振型的振动周期变化很小;当整体性系数不变时,短肢剪力墙的前两阶振型的振动周期随肢强系数的增加显著减小,而其他高阶振型的振动周期变化不大。  相似文献   

16.
地质灾害是导致埋地油气管道破坏失效的主要原因之一,特别是管道沿线的山体滑坡、地层沉降及地面塌陷等严重威胁着管道的安全运行。基于已有研究,介绍了几种分析管土耦合作用的常用模型,总结了地质灾害作用下埋地管道应力计算方法。采用实验模拟与数值模拟相结合的手段,开展了塌陷、沉降以及滑坡地质灾害下管土相互作用实验以及FLAC 3D数值模拟,分别得到了3种地质灾害下的管道应力分布情况,通过比较实验结果、数值模拟结果以及管道理论模型计算结果可得:采用有限差分软件FLAC 3D开展管土相互作用模拟是可行的;仅考虑管道、输送介质以及土体重力载荷得到的理论计算结果与实验及数值模拟的结果相差很大,需要考虑土体摩擦力以及黏聚力等参数的影响,对管道应力计算方法进行改进。  相似文献   

17.
李玉凤  张劲军 《油气储运》2004,23(11):33-37
以剪切作用对加剂原油粘度影响的数学模型和含蜡原油粘温关系机理模型为研究核心,建立了管输过程中加剂原油粘度变化的预测方法,大大减少了试验模拟的工作量和时间.通过对加剂大庆原油、加剂青海一厂原油、加剂青海混合原油和加剂中原原油44组管输模拟试验数据的检验,得出预测结果与模拟试验结果的平均相对偏差为11.5%.粘度预测值、测量值与按照降凝剂效果评价规范的"快速降温"方法评价结果对比表明,以管输应用为目的的降凝剂效果评价必须考虑剪切效应,该研究成果为快速预测管输条件下降凝剂的改性效果提供了一种有效手段.  相似文献   

18.
为研究金属橡胶材料用作隔震器在水平方向承受剪切荷载的性能,对不同成型密度的金属橡胶试件进行静力、动力剪切荷载性能试验,测试成型密度、加载幅值、循环加载次数、动力加载频率、成型工艺等因素对金属橡胶材料剪切滞变性能的影响规律,同时进行大幅值剪切破坏试验,分析极限变形能力.结果表明:改进剪切成型工艺后,金属橡胶材料剪切性能提...  相似文献   

19.
邓道明 《油气储运》1995,14(4):17-20
组合拱式管桥是一种合理的中型管道跨越型式,分析其结构的稳定,则应首先确定这拱的剪刚度。推导其抗剪刚度时,首先要确定杵梁的剪切位移及抗剪刚度。由于组合 合管拱一般为坦拱,其杵梁的抗剪刚度一般不受拱轴线曲率的影响,按直线杵梁处理。在管道跨越工程中,常用三角形截面组合管拱,由三角形截面杵梁的受力分析图,分析推导出其抗剪刚度。利用相似原理也推出了梯形、菱形截面桁梁的抗剪刚度计算式。所述分析方法可推广到其它  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号