首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
设计一种非刚性底盘的以双轮毂电机驱动的山地果园双履带微型运输车,该运输车主体外形尺寸为2 150mm×1 040mm×1 100mm,采用战车式底盘作为行驶机构和双轮毂电机独立驱动及链传动方式。通过SolidWorks软件进行三维建模,创建虚拟样机模型和高台壕沟仿真地形;应用ADAMS软件对运输车底盘行驶机构进行高台和壕沟越障的仿真分析。仿真结果显示,在高台和壕沟越障过程中,质心横向位移的绝对误差在±5%范围内,质心纵向位移的绝对误差在±3%范围内。实地样车试验结果表明,运输车的最大载荷为250kg,最大爬坡度为20°,最高车速为1.8m/s,最小转向半径为0.7m,达到设计要求;其越障能力较强,对地形复杂、路况差甚至无路的山地果园的适应性更好,能较好地满足山地果园的运输要求。  相似文献   

2.
在山地果园电动运输车基础上设计一套增程式动力系统,并利用Advisor进行仿真。根据最大载荷240kg、最大爬坡度15°和最高速度9km/h的设计要求,为运输车选取容量为120A·h,总电压为60V的铅酸蓄电池组作为动力电池,以5kW增程器作为辅助动力源。增程模式下运输车载荷240kg时的续航里程为52.2km,相比纯电动模式的续航里程延长了217.5%,续航能力得到显著提高。  相似文献   

3.
农用轮式AGV纯滚动行驶系统设计与协同控制   总被引:1,自引:0,他引:1  
针对一般农用机器人环境适应能力差,且在转向过程中轮胎磨损问题,基于模块化设计方法设计了一种前轮纯滚动转向与后轮差速驱动的AGV底盘。通过建立AGV纯滚动行驶运动学关系,设计了前轮纯滚动转向与差速驱动协同控制算法。AGV行驶运动控制试验结果表明,AGV运行过程中流畅平稳,左、右前轮实际转角与期望转角的误差小于0.1°,后轮差速比与理论差速比的误差小于0.031,有效实现了纯滚动转向与差速驱动的协同控制,同时拥有较强的环境适应性。AGV行驶试验验证了AGV底盘设计和转向行驶控制系统的正确性与有效性,可为轮式AGV应用提供参考。  相似文献   

4.
山地果园蓄电池驱动单轨运输机的设计   总被引:2,自引:0,他引:2  
【目的】设计和制作山地果园蓄电池驱动单轨运输机,以降低山地果园运输作业的工作风险和劳动强度,提高运输效率。【方法】对由运输机和货运拖车组成的运输机构进行爬坡受力分析,获得满足运输机构爬坡要求的最小牵引力;设计和制作了运输机驱动机构、传动装置、限位装置等关键部件,并对直流无刷电动机、电动机控制器、电磁制动装置、蓄电池进行选型,设计制作以蓄电池为动力、使用无刷直流电动机驱动的山地果园单轨运输机。最后通过行驶速度、工作噪声、电流损耗和蓄电池组续航能力试验,对运输机的工作效果进行检验。【结果】所设计制作的山地果园蓄电池驱动单轨运输机可以搭载0~100kg负载,在平地的行驶速度为0.60~0.58m/s,行驶速度受装载质量影响较小;爬39°斜坡时的速度为0.45~0.28m/s,行驶速度受装载质量影响较大;运输机工作时的最大噪声为83.87dB。选用的蓄电池组在满充条件下,可支持运输机搭载100kg负载爬坡行驶2 700m。【结论】设计制作的运输机的各项技术指标均达到了设计要求,进一步的改进中将通过引入变档机构实现变速比可调,解决满载爬坡时蓄电池输出电流过大的问题。  相似文献   

5.
货箱自适应调平果园作业平台设计与试验   总被引:1,自引:0,他引:1  
【目的】针对南方丘陵山区果园地势起伏不平,现有果园作业平台存在振动大、坡道运输货物易倾翻等问题,设计一种具有货箱伺服调平功能的电动果园作业平台。【方法】通过理论分析及Amesim仿真,试制果货箱自适应调平果园作业平台样机,并测试样机的续航里程、货箱伺服调平等性能参数。【结果】其满载续航时间为3.4 h,最高行驶速度为4 km/h,最大升降高度1.52 m,最小转弯半径为0.89 m。台架试验中空载动态调平误差平均值小于1°;满载动态调平误差平均值小于1.5°,在设计的爬坡角度以内,调平稳定时间最长为4.32 s,果园实地测试中,作业平台以1 km/h的行驶速度,测试在10°和15°纵坡、-10°和-5°横坡的调平性能,最终货箱自动调平角度均保持在-2°~2°;【结论】通过试验分析,货箱自适应调平果园作业平台性能良好,能够满足丘陵山区果园的采摘、运输等环节需要。  相似文献   

6.
设计适用于山地果园液压驱动轨道运输机的控制系统,为山地果园液压驱动轨道运输机械的设计提供支持,以提高运输车的安全性和智能性,实现自动控制。在分析液压驱动轨道运输机整机结构和该运输机频繁换向、小范围无极调速等工况基础上,基于PLC、电磁阀和无线通信模块等设计液压驱动山地果园运输机的控制系统。重点对控制系统进行总体分析,对控制装置的驱动模块、速度控制模块、制动模块、遥控和手动控制模块和抗干扰性着重设计,最后通过运输机各项功能和远程遥控试验,对控制系统的稳定性和功能进行试验研究。试验结果表明,该运输机控制系统性能可靠 ,能够实现运输车启动、制动、速度调节和急停等功能;PLC控制系统体积仅为继电器控制系统的14.8%,接线触点为1/20;山地远程遥控距离达455 m。所设计的控制系统运行稳定可靠、适应性强且体积小,满足运输机智能化和安全性控制要求。  相似文献   

7.
山地果园手扶式单履带运输车设计与试验   总被引:1,自引:0,他引:1       下载免费PDF全文
设计一种以单履带为行走机构的山地果园运输车,该山地果园运输车由单履带行走装置、车架、传动装置、动力系统等组成,其主体外形尺寸为1 540mm×600mm×815mm。根据整车质心分析和人机工程学确定车辆的结构和运动参数,并利用Creo建立三维模型,计算出车辆的质心位置。根据车辆的质心位置分析车辆在横向坡面和纵向坡面的稳定性。对该山地果园运输车样机在满载情况下进行不同工作环境的测试,结果表明:设计的山地果园运输车的最大载荷为75kg,具备上10°纵向坡,下30°纵向坡以及通过20°横向坡面和通过各种复杂路面的能力。该运输车能够较好地满足山地果园横向运输要求。  相似文献   

8.
[目的]为了提高串联式混合动力电动拖拉机的动力性,设计了一种后轮轮毂电机独立的驱动系统。[方法]通过理论分析探讨了各驱动部件的参数设计与匹配方法,提出以犁耕工况下的牵引力、牵引效率及运输工况下的爬坡度、最大载质量作为该驱动系统的动力性能评价指标,并搭建试验台进行测试。[结果]分析可知:该串联式混合动力驱动系统在纯电动驱动模式下可提供的最大牵引力为8 775.1 N,牵引效率为0.82~0.86,最大爬坡度可达40.2%,在坡度为0、4%、8%、12%的路面行驶可承受的最大载质量分别为9 088.2、5 408.8、3 569.1、2 465.3 kg;在混合动力驱动模式下可提供的最大牵引力可达8 115.2 N,牵引效率为0.60~0.85,最大爬坡度可达37.3%,在坡度为0、4%、8%、12%的路面行驶可承受的最大载质量分别为8 516.0、5 027.4、3 283.1、2 236.4 kg。[结论]该驱动系统在两种驱动模式下均可满足较大耕深的犁耕作业要求,适应较大坡度的大载质量运输要求。  相似文献   

9.
以A4935芯片为电机驱动控制芯片,以TMS320F28035 DSP为控制核心设计了一种用于大型农用机械转向系统的电机控制电路,通过试验验证,当大型农用机械转向时,通过调节电机的占空比很好地缓解了转向沉重的现象.  相似文献   

10.
针对目前山地林果茶园挖穴作业人工劳动强度大和作业效率低的问题,设计了一种具有行驶动力的山地林果茶园电动自走式挖穴机。该挖穴机能自动完成钻头进给行程与复位行程。田间试验结果表明,该挖穴机单次作业平均挖穴时间为50.7 s,单次有效挖穴作业能耗为6.38 W·h,施肥穴平均深度为392.5 mm,施肥穴平均直径为303 mm,行走速度为1.237 m/s,能够顺利通过15°斜坡。挖穴作业过程中钻头的进给与回程运动均无需人工操作,可提高工作效率,降低劳动强度,并保证挖穴操作中的安全性。  相似文献   

11.
针对丘陵山地现有果园割草机行走性能差及人员操作便捷性低等问题,设计一种铰接转向果园割草机。采用理论分析与仿真、田间试验相结合的方法,对铰接转向果园割草机进行研究。结果表明:1)铰接转向果园割草机最大行驶速度5.9 km/h,割刀转速1 450~3 850 rad/min,最小转弯半径466.4 mm,爬坡与下坡纵向极限倾覆角度分别为37.47°和60.99°,横向极限倾覆角为48.76°;2)应用Ansys workbench软件分析得到割草机车架在平地直行、平地最大角度转向、直行爬坡与直行下坡四种工况下最大变形量和最大等效应力分别为0.034 4 mm和20.06 MPa。田间试验结果表明:铰接转向果园割草机的割幅利用率为98.9%,平均碎草率85.9%,割茬高度基本符合设定高度,满足丘陵山地小地块果园作业需求。  相似文献   

12.
以提高华南农业大学研制的山地果园轻简化轮式运输机作业动力控制稳定性为目标,设计加装了一种成本较低的动力稳定系统。系统由制动手柄、电推杆、电磁阀、制动油泵、制动钳组成。根据控制策略在Simulink中建立动力独立控制模型,经过仿真分析,在稳态之后非受控的动力轮速度与受控动力轮的速度相等,整车驱动力增大,提高了运输机在路况参数多变路面的通过性,并在动力稳定系统的基础上加入了自适应模糊PID速度控制器,对其进行了仿真分析。结果表明,在3.5 s时,两侧动力轮纵向速度之差进入稳定响应,稳态绝对误差绝对值最大值为0.422 2,最小值为0.004 7,响应到达并保持在终值±5%误差内所需的最短时间为3.0 s,稳态条件下(t→∞)的误差为0,加快了系统响应速度,提高了调节精度与稳定性。对运输机实车测试,受控后稳态车轮速度的绝对误差为0.178 1~0.396 1 km/h,相对误差为0.71%~5.27%,与仿真结果一致。  相似文献   

13.
为提高山地果园轮式运输机在作业过程中动力控制的稳定性,对其动力控制系统进行系统构建与试验。根据动力独立控制的控制策略,结合山地果园轮式运输机的结构特征,搭建控制系统硬件并进行无改动原车空载试验以及动力稳定系统控制下的空载试验。结果表明,当节气门开度加大后,发动机输出功率增加,抵消了非陷坑车轮滚动的一部分阻力;在相同的行驶阻力条件下,节气门开度越大,车轮速度越大,最后受控后稳态车轮速度的绝对误差为0.178 1~0.396 1km/h,相对误差最大为5.27%。试验表明,动力轮速度控制达到设计要求,在果园轮式运输机的某个动力轮陷坑之后,可以通过调节没陷坑的动力轮速度,使动力加大,从而有助于运输车在泥泞的道路行走或者有助于运输车具有足够的动力爬出陷坑。  相似文献   

14.
果园割草机器人的除草性能与草的物理特性以及甩刀的设计参数紧密相关,结合柑橘果园杂草种类情况及其物理特性,基于Y型甩刀式割草机构设计一种果园割草机器人。运用D-H法建立甩刀切割单个茎秆的运动学模型,模型分析表明,在不出现缠草的条件下,甩刀轴转速1 500 r/min时在最优切割位内对单根杂草茎秆的碰撞力为74.25 N。刀片的切割轨迹分析表明,设计的Y型甩刀刀片切向速度与前进速度的比值λ>1时,割草机器人能有效地进行割草作业。割草机器人实地割草试验结果表明,刀片座间距43 mm、刀轴转速1 500 r/min、前进速度1.0 m/s时,重割率最小。  相似文献   

15.
为预测丘陵山区多功能茶园管理机变速箱齿轮的失效部位以及使用寿命,采用CAXA CAD和Solidworks软件建立茶园管理机变速箱齿轮副三维有限元模型.通过分析齿轮副在载荷作用下的力学特性,得到齿轮的范·米塞斯(Von Mises)应力、位移及应变分布情况,最大范·米塞斯应力约为209.63MPa,小于材料的屈服极限,齿轮根部不会发生断裂.运用极大似然估计法建立齿轮的三参数Weibull分布函数和概率密度函数.预测齿轮的失效概率和平均失效时间,得到齿轮工作1 000h失效概率为98.04%,平均失效时间约为642h.运用Simulation疲劳分析模块对齿轮进行疲劳寿命分析,仿真结果表明,齿轮工作700h左右完全失效.该研究分别从齿轮失效概率和疲劳失效两个角度对其使用寿命进行预测,并且得到相近的结果,从而为茶园管理机变速箱的维护提供参考.  相似文献   

16.
为验证单旋翼油动无人机在丘陵山地果园的喷雾效果,将单旋翼油动无人机与圆形果园风送喷雾机在矮砧密植苹果园进行喷雾性能对比试验,结果表明:单旋翼油动无人机喷雾作业的果树上中下层雾滴沉积覆盖率分别为0.66%~21.98%、1.20%~16.17%、0.38%~3.96%,雾滴平均体积中值直径大小顺序依次为上层>中层>下层;圆形果园风送喷雾机喷雾作业的果树上中下层雾滴沉积覆盖率分别为5.68%~24.94%、2.64%~34.61%、3.15%~21.78%,雾滴平均体积中值直径大小顺序依次为下层>中层>上层;单旋翼油动无人机喷洒的雾滴在果树中上层的沉积效果显著,圆形果园风送喷雾机则为中下层效果显著。排除机具故障等不确定因素影响,无人机作业的工作效能与节水省药性能优于喷雾机;在果园生产抢农时和病虫害应急处理中,无人机表现出较好的实用性能。  相似文献   

17.
低丘红壤泡桐——茶树复合种植模式的研究   总被引:8,自引:0,他引:8  
研究了亚热带丘陵红壤泡桐茶树复合种植模式的综合效果。结果表明 :与纯茶园相比 ,泡桐茶树复合园的日平均光照强度下降 5 1 .2 % ;茶蓬内日平均气温下降 0 .3~ 1 .2℃ ;相对湿度增加 6.1~ 7.5个百分点 ;1m土层内根系总量增加 44 .4% ;各土层贮水量提高 2 .5 %~ 1 1 .3 % ;凋落物增加 2 8.0 2 % ;凋落物养分含量增加 2 0 .3 % ;0~60cm土层内速效氮、磷、钾总量增加 3 4.6% ;茶叶产量提高 1 6.9% ;茶叶品质也有所改善  相似文献   

18.
吴国荣 《北京农业》2011,(9):171-172
丘陵山地果园的种植活动,面临着许多问题,结合集成农业生态技术,对丘陵山地果园进行生态方面的维护,不仅实现了生态环境的质量提高,更使种植业的经济效益获得发展。  相似文献   

19.
我国果园机械化生产现状与发展策略   总被引:6,自引:1,他引:5       下载免费PDF全文
针对果园机械化水平较低、产业发展滞后问题,以果园土壤耕整、树体管理、病虫害防治、灌溉、果品回收环节为突破口,重点分析围绕上述5个环节相关的果园生产动力机械、开沟施肥机械、植保机械、修剪机械、花果管理机械、枝条粉碎机械、灌溉机械、收获机械国内外使用现状及发展趋势。针对研究现状,分析了我国果园机械化发展中存在的主要问题,并进一步推荐与分析了6.67hm2标准化果园劳动量较大的七大作业环节的机具选型、劳动成本及节约成本效益。研究结果表明:平地果园和丘陵山地果园的综合机械化作业水平分别为:土壤耕整机械25%和5.5%,树体管理20%和8%,病虫防治15%和7.5%,果品收获4%和2%,综合机械化16%和5.75%。当前政府应加大科研投入力度,加强农机与农艺的融合,循序渐进、各环节逐一突破,加强果园机械化技术的推广应用,因地制宜,有选择地发展我国果园机械。  相似文献   

20.
杉木种子园内花粉飞散的观测与分析   总被引:5,自引:2,他引:5  
1989~1990年对贵州黎平县东风林场7~11年杉木无性系种子园花粉飞散作了观测。结果表明:杉木种子园散粉历时7~9d,但90%以上的花粉集中在2~4d散出;一天中花粉浓度的高峰值多出现在9~13时,最大浓度可达1500~2000粒/cm~2·h;花粉浓度的方位差异与主风方向有关;在树高范围内,花粉浓度有由下至上增加的趋势;当大气相对湿度低于75%,风速大于3m/s时,花粉易散出,也易抬升.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号