首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
花[鱼骨]耗氧率和窒息点的初步研究   总被引:2,自引:0,他引:2  
实验测定了花[鱼骨]的耗氧率和窒息点,并对耗氧率的昼夜变化规律以及体重对其窒息点的影响进行了研究。结果表明,在实验温度(10~25℃)条件下,花[鱼骨]的耗氧率随温度的升高而增大,随体重的增加而降低;耗氧率(R0)与温度(T)和体重(W)的二元线形回归方程是:R0=0.022T-0.001W-0.05,复相关系数为0.926,F检验表明,花[鱼骨]的耗氧率与温度和体重之间有极显著复相关关系;花[鱼骨]的耗氧率具有昼夜节律性,耗氧高峰山现在凌晨3:00,低谷是在上午11:00;花[鱼骨]的窒息点与体重显著相关,窒息点A(mg/L)与体重W(g)的相关关系表示为:A=0.2671W^0.2801,随体重的增加而升高。  相似文献   

2.
影响鱼类耗氧量的因素   总被引:1,自引:0,他引:1  
鱼类耗氧量的测定,一般是以测定单位时间内水中氧气减少的量来表示。耗氧量值用来衡量鱼的代谢强度,一般分为基础耗氧率(标准耗氧率)和最高耗氧率(活动耗氧率)。  相似文献   

3.
鱼类耗氧量的测定,一般是以测定单位时间内水中氧气减少的量来表示,耗氧量值用来衡量鱼的代谢强度,一般分为基础耗氧率(标准耗氧率)和最高耗氧率(活动耗氧率)。 基础耗氧率是指鱼体在未受到运动、食物、温度等影响而保持安静状态时的消耗氧量。最高耗氧量是指鱼体活动时的耗氧情况,即活动耗氧率,鱼活动越强耗氧率越高。  相似文献   

4.
花(鱼骨)耗氧率和窒息点的初步研究   总被引:1,自引:0,他引:1  
实验测定了花的耗氧率和窒息点,并对耗氧率的昼夜变化规律以及体重对其窒息点的影响进行了研究。结果表明,在实验温度(10~25℃)条件下,花的耗氧率随温度的升高而增大,随体重的增加而降低;耗氧率(R0)与温度(T)和体重(W)的二元线形回归方程是:R0=0.022T-0.001W-0.05,复相关系数为0.926,F检验表明,花的耗氧率与温度和体重之间有极显著复相关关系;花的耗氧率具有昼夜节律性,耗氧高峰出现在凌晨3:00,低谷是在上午11:00;花的窒息点与体重显著相关,窒息点A(mg/L)与体重W(g)的相关关系表示为:A=0.2671W0.2801,随体重的增加而升高。  相似文献   

5.
实验测定了花的耗氧率和窒息点,并对耗氧率的昼夜变化规律以及体重对其窒息点的影响进行了研究。结果表明,在实验温度(10~25℃)条件下,花的耗氧率随温度的升高而增大,随体重的增加而降低;耗氧率(R0)与温度(T)和体重(W)的二元线形回归方程是:R0=0.022T-0.001W-0.05,复相关系数为0.926,F检验表明,花的耗氧率与温度和体重之间有极显著复相关关系;花的耗氧率具有昼夜节律性,耗氧高峰出现在凌晨3:00,低谷是在上午11:00;花的窒息点与体重显著相关,窒息点A(mg/L)与体重W(g)的相关关系表示为:A=0.2671W0.2801,随体重的增加而升高。  相似文献   

6.
<正> 鱼类耗氧量的测定,一般是以测定单位时间内水中氧气减少的量来表示,耗氧量值用来衡量鱼的代谢强度,一般分为基础耗氧率(标准耗氧率)和最高耗氧率(活动耗氧率)。基础耗氧率是指鱼体在未受到运动、食物、温度等影响而保持安静状态时的消耗氧量。最高耗氧量是指鱼体活动时的耗氧情况,即活动耗氧率,鱼活动越强耗氧率越高。1 温度和鱼的耗氧率的关系。无论是基  相似文献   

7.
实验根据白甲鱼鱼体的大小和鱼的数量,分别采用了封闭静水式和封闭流水式2种实验装置测得了该鱼的耗氧率与窒息点,为资源保护和人工养殖提供了数据参考.结果表日月:封闭流水条件下白甲鱼的耗氧率随着时间变化,早晨9:00耗氧率最低,下午15:00达到最大,耗氧率平均为0.72 mg/g·h;分别对体质量为0.86,1.93,12.3 g的白甲鱼在静水条件下的耗氧率进行了测定,其耗氧率分别为(0.690±0.011),(0.710±0.014),(0.596±0.028)mg/g·h.随着体质量规格的增大,耗氧量逐渐升高,耗氧率逐渐减小.窒息点平均为(1.136±0.036)mg/g·h.白甲鱼窒息点比大多数鱼类的窒息点都要高,所以在人工养殖或运输时,养殖与运输密度应该低于一般家养鱼类.  相似文献   

8.
采用流式细胞术,以鸡(Gallus gallus)血细胞DNA含量(2.3pg/2C,C指单倍体)为标准,对5种经济鱼类白甲鱼(Onychostoma sima)、三倍体兴国红鲤(triploid Cyprinus carpio var.singuonensis)、胭脂鱼(Myxocyprinus asiaticus)、中华沙鳅(Sinibotia superciliaris)和花鱼骨(Hemibarbus maculatus)的基因组大小(或称C-值)和倍性进行测定。结果表明,5种淡水鱼类的的C-值分别为:白甲鱼(1.18±0.01)pg,三倍体兴国红鲤(1.92±0.07)pg,胭脂鱼(2.62±0.28)pg,中华沙鳅(0.89±0.01)pg,花鱼骨(1.24±0.02)pg,C-值从大到小排列依次为:胭脂鱼兴国红鲤花鱼骨白甲鱼中华沙鳅。在5种经济鱼类中,除了亲缘关系很近的白甲鱼与花鱼骨(同一科)的C-值大小差异不显著外(P0.05),其余的种间(不同科)的C-值大小差异显著。倍性分析结果表明,白甲鱼、花鱼骨和中华沙鳅属于二倍体,兴国红鲤属于三倍体,胭脂鱼属于四倍体。  相似文献   

9.
海水和淡水中施氏鲟幼鱼耗氧率与窒息点的比较   总被引:1,自引:0,他引:1  
将施氏鲟Acipenser schrenckii幼鱼在淡水和海水(盐度为28)条件下分别驯养14 d后(水温为20.0±0.2℃),禁食48 h,测定了该鱼的耗氧率和窒息点。结果表明:海水和淡水中幼鱼的平均耗氧率分别为(235.10±37.70)、(202.20±30.12)mg/(kg.h),淡水组显著低于海水组(P<0.05);幼鱼的窒息点分别为(0.94±0.02)、(0.84±0.01)mg/L,淡水组显著低于海水组(P<0.05);在两种试验条件下,幼鱼昼夜耗氧的变化规律均表现出两个耗氧高峰(8:00、22:00)和两个耗氧低谷(18:00、0:00)。由此可知,经过14 d海水养殖,幼鱼的代谢率仍处于较高水平,耐低氧能力还较弱,而生理规律已经与淡水环境中趋于一致。此外,笔者还将本研究结果与其它相关研究结果进行了比较,发现施氏鲟的代谢率高于部分淡水鱼类,但该鱼白天与夜间的平均耗氧率差异不大,其代谢水平变化属于昼夜差异不明显类型。  相似文献   

10.
赤眼鳟的耗氧量、耗氧率与窒息点研究   总被引:1,自引:0,他引:1  
杨曦  李桂峰 《广东农业科学》2012,39(13):164-165,169
按体重将试验鱼分为4组,测定赤眼鳟的耗氧量、耗氧率和窒息点。结果表明,采用封闭静水式测量方法在28~32℃条件下,赤眼鳟的窒息点和耗氧率随体重的增加而降低,耗氧量随体重增加而升高。耗氧率(R0)与体重(W)的线性回归方程为R0=0.0011W2-0.0945W+2.0724,且赤眼鳟的耗氧率与体重之间有显著相关关系。相同年龄阶段的群体和个体比较,其窒息点、耗氧量、耗氧率三者相近;不同年龄阶段的群体和个体比较,其窒息点、耗氧量和耗氧率三者无相关性。对赤眼鳟呼吸耗氧的研究表明,赤眼鳟个体耐低氧能力较高,对水中溶氧要求不高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号