首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radiometric (potassium-argon) age determinations for basalts and tuffs associated with middle to late Tertiary mammal-bearing horizons in Patagonia, southern Argentina, permit refinement of boundaries and hiatuses between beds of Deseadan (early Oligocene) through Friasian (middle to late Miocene) age. At two localities beds of Deseadan age are overlain by basalts, which gave dates of 33.6 and 35.4 million years ago; 34.0 million years ago is tentatively accepted as a terminal date for known Deseadan. At several localities beds of Colhuehuapian age are underlain by basalts, which gave dates ranging from 28.8 to 24.3 million years ago; 25.0 million years is tentatively taken as a basal age for known Colhuehuapian. The paleontological hiatus between known Deseadan and known Colhuehuapian is thus in the order of 9.0 million years. Two tuffs from the Santa Cruz Formation (Santacrucian) gave ages of 21.7 and 18.5 million years. Plagioclase and biotite concentrates of an ignimbrite from the Collón Curá Formation (Friasian) gave ages ranging from 15.4 to 14.0 million years.  相似文献   

2.
Explanations for the causes of climatic changes and associated faunal and floral extinctions at the close of the Eocene Epoch have long been controversial because of, in part, uncertainties in correlation and dating of global events. New single-crystal laser fusion (SCLF) (40)Ar/(39)Ar dates on tephra from key magnetostratigraphic and fossilbearing sections necessitate significant revision in North American late Paleogene chronology. The Chadronian-Orellan North American Land Mammal "Age" boundary, as a result, is shifted from 32.4 to 34.0 Ma (million years ago), the Orellan-Whitneyan boundary is shifted from 30.8 to 32.0 Ma, and the Whitneyan-Arikareean boundary is now approximately 29.0 Ma. The new dates shift the correlation of Chron C12R from the Chadronian to within the Orellan-Whitneyan interval, the Chadronian becomes late Eocene in age, and the North American Oligocene is restricted to the Orellan, Whitneyan, and early Arikareean. The Eocene-Oligocene boundary, and its associated climate change and extinction events, as a result, correlates with the Chadronian-Orellan boundary, not the Duchesnean-Chadronian boundary.  相似文献   

3.
The relation between the partial pressure of atmospheric carbon dioxide (pCO2) and Paleogene climate is poorly resolved. We used stable carbon isotopic values of di-unsaturated alkenones extracted from deep sea cores to reconstruct pCO2 from the middle Eocene to the late Oligocene (approximately 45 to 25 million years ago). Our results demonstrate that pCO2 ranged between 1000 to 1500 parts per million by volume in the middle to late Eocene, then decreased in several steps during the Oligocene, and reached modern levels by the latest Oligocene. The fall in pCO2 likely allowed for a critical expansion of ice sheets on Antarctica and promoted conditions that forced the onset of terrestrial C4 photosynthesis.  相似文献   

4.
Interest in extraterrestrial causes for the apparent 26-to 32-million-year periodicity of mass extinctions has focused on the terminal Eocene event and older events, although there is now evidence of a mid-Oligocene event near the early/late Oligocene boundary, or about 32.4 million years ago. An abrupt (200,000 years or less) mid-Oligocene extinction event appears in the record of North American land mammals, which results in the selective disappearance of archaic members of the fauna and later diversification of other taxa. The selective nature of the extinctions suggests climatic and ecological causes rather than an extraterrestrial catastrophe. Increased mid-Oligocene glaciation, worldwide cooling, a major regression event, and abrupt changes in the flora are probably the immediate causes, and these may have resulted from changes in global oceanic circulation.  相似文献   

5.
An iridium anomaly has been found in coincidence with the known microtektite level in cores from Deep Sea Drilling Project site 149 in the Caribbean Sea. The iridium was probably not in the microtektites but deposited simultaneously with them; this could occur if the iridium was deposited from a dust cloud resulting from a bolide impact, as suggested for the anomaly associated with the Cretaceous-Tertiary boundary. Other workers have deduced that the microtektites are part of the North American strewn tektite field, which is dated at about 34 million years before present, and that the microtektite horizon in deep-sea cores is synchronous with the extinction of five radiolarian species. Mass extinctions also occur in terrestrial mammals within 4 million years of this time. The iridium anomaly and the tektites and microtektites are supportive of a major bolide impact about 34 million years ago.  相似文献   

6.
A deep-sea core from the Caribbean contains a layer of sediment highly enriched in meteoritic iridium. This layer underlies a layer of North American microtektites dated at 34.4 million years ago and coincides with the extinction of five major species of Radiolaria. It is suggested that a massive, chemically undifferentiated meteorite collided with the earth, producing the tektites and leading to extinctions 34 million years ago.  相似文献   

7.
The earliest fossil record of African anthropoid primates (monkeys and apes) comes from the Jebel Qatrani Formation in the Fayum depression of Egypt. Reevaluation of both geologic and faunal evidence indicates that this formation was deposited in the early part of the Oligocene Epoch, more than 31 million years ago, earlier than previous estimates. The great antiquity of the fossil higher primates from Egypt accords well with their primitive morphology compared with later Old World higher primates. Thus, the anthropoid primates and hystricomorph rodents from Fayum are also considerably older than the earliest higher primates and rodents from South America.  相似文献   

8.
Sediment cores from the Arctic Ocean yield significant faunal and lithologic evidence of alternating cold and milder periods for the last 6 million years. Although high-latitude continental glaciation commenced prior to 6 million years ago, the Arctic Ocean remained free of permanent pack ice up to approximately 0.7 million years ago, after which successive ice-covered and ice-free conditions existed.  相似文献   

9.
Global cooling and the development of continental-scale Antarctic glaciation occurred in the late middle Eocene to early Oligocene (~38 to 28 million years ago), accompanied by deep-ocean reorganization attributed to gradual Antarctic Circumpolar Current (ACC) development. Our benthic foraminiferal stable isotope comparisons show that a large δ(13)C offset developed between mid-depth (~600 meters) and deep (>1000 meters) western North Atlantic waters in the early Oligocene, indicating the development of intermediate-depth δ(13)C and O(2) minima closely linked in the modern ocean to northward incursion of Antarctic Intermediate Water. At the same time, the ocean's coldest waters became restricted to south of the ACC, probably forming a bottom-ocean layer, as in the modern ocean. We show that the modern four-layer ocean structure (surface, intermediate, deep, and bottom waters) developed during the early Oligocene as a consequence of the ACC.  相似文献   

10.
Deep-sea drilling in the Southern Ocean south of Australia and New Zealand shows that the Circum-Antarctic Current developed about 30 million years ago in the middle to late Oligocene when final separation occurred between Antarctica and the continental South Tasman Rise. Australia had commenced drifting northward from Antarctica 20 million years before this.  相似文献   

11.
Several mechanisms have been proposed to explain the high levels of plant diversity in the Neotropics today, but little is known about diversification patterns of Neotropical floras through geological time. Here, we present the longest time series compiled for palynological plant diversity of the Neotropics (15 stratigraphic sections, 1530 samples, 1411 morphospecies, and 287,736 occurrences) from the Paleocene to the early Miocene (65 to 20 million years ago) in central Colombia and western Venezuela. The record shows a low-diversity Paleocene flora, a significantly more diverse early to middle Eocene flora exceeding Holocene levels, and a decline in diversity at the end of the Eocene and early Oligocene. A good correlation between diversity fluctuations and changes in global temperature was found, suggesting that tropical climate change may be directly driving the observed diversity pattern. Alternatively, the good correspondence may result from the control that climate exerts on the area available for tropical plants to grow.  相似文献   

12.
Geomagnetic polarity change and faunal extinction in the southern ocean   总被引:1,自引:0,他引:1  
Paleomnlagnietic polarity changes have been detected in nine deep-sea sedimentary cores (from the Pacific-Antarctic Basin) in which an extinction horizon of a radiolarian assemblage was previously independently determined. The depths of the polarity change 0.7 million years ago and the faunal boundary are closely correlated, confirming that the faunal extinction was locally virtually synchronous. Although the reason for the faunal extinction is unknown. the possibility of causal relationships between faunal extinction and factors directly involved with sedimentation rate, sedimentation rate variation, and sediment type appears to be excluded.  相似文献   

13.
The Permian-Triassic boundary records the most severe mass extinctions in Earth's history. Siberian flood volcanism, the most profuse known such subaerial event, produced 2 million to 3 million cubic kilometers of volcanic ejecta in approximately 1 million years or less. Analysis of (40)Ar/(39)Ar data from two tuffs in southern China yielded a date of 250.0 +/- 0.2 million years ago for the Permian-Triassic boundary, which is comparable to the inception of main stage Siberian flood volcanism at 250.0 +/- 0.3 million years ago. Volcanogenic sulfate aerosols and the dynamic effects of the Siberian plume likely contributed to environmental extrema that led to the mass extinctions.  相似文献   

14.
(40)Ar/(39)Ar dating of tektites discovered recently in Cretaceous-Tertiary (K-T) boundary marine sedimentary rocks on Haiti indicates that the K-T boundary and impact event are coeval at 64.5 +/- 0.1 million years ago. Sanidine from a bentonite that lies directly above the K-T boundary in continental, coal-bearing, sedimentary rocks of Montana was also dated and has a (40)Ar/(39)Ar age of 64.6 +/- 0.2 million years ago, which is indistinguishable statistically from the age of the tektites.  相似文献   

15.
U-Pb isotopic age of the StW 573 hominid from Sterkfontein, South Africa   总被引:1,自引:0,他引:1  
Sterkfontein cave, South Africa, has yielded an australopith skeleton, StW 573, whose completeness has excited great interest in paleoanthropology. StW 573, or "Little Foot," was found 25 meters below the surface in the Silberberg Grotto. 238U-206Pb measurements on speleothems immediately above and below the fossil remains, corrected for initial 234U disequilibrium, yield ages of 2.17 +/- 0.17 million years ago (Ma) and 2.24(-0.07)(+0.09) Ma, respectively, indicating an age for StW 573 of close to 2.2 Ma. This age is in contrast to an age of approximately 3.3 Ma suggested by magnetochronology and ages of approximately 4 Ma based on 10Be and 26Al, but it is compatible with a faunal age range of 4 to 2 Ma.  相似文献   

16.
The Paleocene-Eocene thermal maximum (PETM) has been attributed to a sudden release of carbon dioxide and/or methane. 40Ar/39Ar age determinations show that the Danish Ash-17 deposit, which overlies the PETM by about 450,000 years in the Atlantic, and the Skraenterne Formation Tuff, representing the end of 1 +/- 0.5 million years of massive volcanism in East Greenland, are coeval. The relative age of Danish Ash-17 thus places the PETM onset after the beginning of massive flood basalt volcanism at 56.1 +/- 0.4 million years ago but within error of the estimated continental breakup time of 55.5 +/- 0.3 million years ago, marked by the eruption of mid-ocean ridge basalt-like flows. These correlations support the view that the PETM was triggered by greenhouse gas release during magma interaction with basin-filling carbon-rich sedimentary rocks proximal to the embryonic plate boundary between Greenland and Europe.  相似文献   

17.
Pore waters associated with gas hydrates at Blake Ridge in the Atlantic Ocean were dated by measuring their iodine-129/iodine ratios. Samples collected from sediments with ages between 1.8 and 6 million years ago consistently yield ages around 55 million years ago. These ages, together with the strong iodine enrichment observed in the pore waters, suggest that the origin of iodine is related to organic material of early Tertiary age, which probably is also the source of the methane in the gas hydrates at this location.  相似文献   

18.
Analysis of middle Eocene to early, Oligocene calcareous and siliceous microfossils shows gradual biotic changes with no massive extinction event across the Eocene/Oligocene boundary. Biotic changes in the late Paleogene appear to reflect changing paleoclimatic and paleoceanographic conditions and do not support suggestions of a catastrophic biotic event caused by a bolide impact at the Eocenel Oligocene boundary.  相似文献   

19.
Tropical South America has the highest plant diversity of any region today, but this richness is usually characterized as a geologically recent development (Neogene or Pleistocene). From caldera-lake beds exposed at Laguna del Hunco in Patagonia, Argentina, paleolatitude approximately 47 degrees S, we report 102 leaf species. Radioisotopic and paleomagnetic analyses indicate that the flora was deposited 52 million years ago, the time of the early Eocene climatic optimum, when tropical plant taxa and warm, equable climates reached middle latitudes of both hemispheres. Adjusted for sample size, observed richness exceeds that of any other Eocene leaf flora, supporting an ancient history of high plant diversity in warm areas of South America.  相似文献   

20.
Bandy OL 《Science (New York, N.Y.)》1963,140(3574):1402-1403
Planktonic foraminifera occur in the limy sediment of a manganese-coated breccia from the top of Erben Guyot, a sunken island which is located about 800 miles west of San Diego, California. The fauna suggests an age of Early Miocene (Aquitanian Stage), which represents an absolute age of more than 25 million years. Bathyal foraminifera in the sample indicate considerable subsidence between the suggested time of truncation (Oligocene) of the seamount and the accumulation of the foraminiferal fauna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号