首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
经实地勘查后布置燃烧床,以风速、表层可燃物含水率、现场温度、坡度为因素,温度变化、燃烧蔓延速度、火线强度为特性指标设计L9(34)正交试验。结果表明:风速对火蔓延速度及火线强度具有明显影响,随着风速的增大,火蔓延速度与火线强度明显增加;表层含水率对最高温度、火蔓延速度及火线强度的影响较明显,随着表层含水率增加,最高温度、火蔓延速度及火线强度均降低;现场温度对最高温度有明显影响,随现场温度升高,最高温度增加;坡度对最高温度、火蔓延速度及火线强度均有影响,随坡度的增加,最高温度增加,火蔓延速度加快,火线强度加强;风速及表层含水率是影响剩余物燃烧的主要因素,当风速为5 m·s-1、表层含水率为10%时,影响剩余物燃烧的权重最大。  相似文献   

2.
以黑龙江省帽儿山地区典型森林类型兴安落叶松林地表可燃物为研究对象,分析不同可燃物含水率、可燃物载量、风速和坡度与火蔓延速度之间的关系,共进行4(可燃物载量)×4(可燃物含水率)×3(风速)×3(坡度)=144组点烧试验,并建立适用于兴安落叶松针叶林的火蔓延模型。结果表明:在试验设定范围内,可燃物床层在火蔓延过程中80%为阴燃,火蔓延速度在75%区间内不超过6 m·h^-1,最大值为93.02 m·h^-1、最小值为0.41 m·h^-1;可燃物载量对火蔓延速度影响不显著,3个显著变量对火蔓延速度的影响由大到小的顺序为:风速、可燃物含水率、坡度;4个因子交互作用对火蔓延速度的相对贡献为:可燃物含水率×坡度×风速27.73%、风速17.22%、可燃物含水率×坡度×风速×载量13.01%、可燃物含水率×风速11.01%、坡度×风速9.21%;火蔓延速度预测模型的标准估计误差值为8.56,验证误差值为12.93。因此,在森林火行为预报工作中,应注意可燃物的特征、所处的地理位置及其环境因素。  相似文献   

3.
以北京市山区主要针叶林(侧柏林和油松林)为研究对象,通过对林分树冠可燃物的负荷量、结构、理化性质及火行为特征进行分析,建立了树冠可燃物水平连续性指数D和评估等级,并对侧柏林和油松林的可燃物水平连续性进行评估与分析。研究结果显示:可燃物负荷量对火蔓延速度的影响显著,随可燃物负荷量增大,火蔓延速度增加,增加幅度受到可燃物紧密度的影响;风速对火蔓延速度的影响十分明显,对可燃物水平连续性的影响程度大于坡度;相同风速下,油松林树冠火的蔓延速度大于侧柏林;侧柏林D的平均值为1.470(高度连续),油松林D的平均值为0.933(中度连续),侧柏林树冠火蔓延的危险性大于油松林,一旦发生火灾,侧柏林比油松林更容易形成大面积高强度树冠火;D的主要影响因素是针叶树种树冠负荷量及其空间分布,以及风速和坡度及其协同作用。  相似文献   

4.
采用室内铁槽燃烧法,分别对油松、樟子松和日本落叶松的地表凋落物进行了燃烧蔓延速度测定。结果显示:凋落物燃烧速度随着气温升高而逐渐加速,其中油松和樟子松凋落物的燃烧蔓延速度较快,日本落叶松凋落物燃烧蔓延速度较慢,在温度升至25℃时,3种针叶树凋落物燃烧速率分别比5℃时增长了39.32%、33.33%、33.33%;随着含水率的逐渐增大,3种针叶树凋落物燃烧蔓延速度均表现出逐渐减小的趋势,在含水率达到30%时,樟子松、油松凋落物燃烧蔓延速度分别比含水率5%时降低了33.93%、26.92%、53.33%;在上坡火中,坡度的增加对油松、樟子松和日本落叶松凋落物均表现燃烧蔓延速度加快的趋势,当坡度达到45°时,3种针叶树凋落物燃烧速率分别比无坡度时提高了100.0%、171.4%、12.50%。在下坡火燃烧当中,表现为坡度越大燃烧越慢的趋势。在坡度为45°时,油松、樟子松和日本落叶松凋落物的燃烧速率分别比无坡度时下降为59.32%、53.57%、68.75%。  相似文献   

5.
地表火燃烧参数及其火头前影响区的实验研究   总被引:5,自引:2,他引:3  
通过两次地表火模拟实验,测量了地表火的主要燃烧参数,包括火蔓延速度、火焰高度、火墙厚度以及地表火火头前方的风速和温度,并计算得出对应的火线火强度.通过相关分析和回归分析,得出了以下结论:在火头前方空气中某点温度主要取决火强度和该点与火头的距离;离火头较近时辐射起决定性作用,在离火头距离小于25m以后,随着火头的接近,火头前方的风速有增大的趋势;对于900kW·m-1左右的中能量地表火,火头卷吸作用的范围大于6.5m.定性地说,蔓延速度快,火墙厚度就增大.  相似文献   

6.
北京市十三陵林场油松林地表火行为模拟   总被引:3,自引:3,他引:0  
目的油松林是华北地区典型针叶林分,易发生森林火灾。通过对油松林地表火行为模拟研究可以为森林可燃物管理,林火预防及扑救提供科学依据。方法本研究以北京市十三陵林场油松林为研究对象,通过野外调查地表枯死可燃物(1、10、100 h时滞)和灌层可燃物,记录林分因子(第1枝下高、树高、林龄和胸径)和环境因子(坡度、坡向和海拔)。结合内业实验测可燃物含水率和热值,利用火行为模拟软件BehavePlus5.0,对1 h时滞可燃物设定不同含水率和风速值,模拟所研究林分地表火蔓延速度、火线强度、火焰高度以及单位面积发热量4个重要的火行为指标。结果1、10、100 h时滞和灌层可燃物占总可燃物载量比分别为78%、5%、4%和13%。基于实测可燃物载量和含水率,油松林地表火蔓延速度平均值为2.1 m/min,火线强度平均值为270 kW/m,火焰高度平均值为0.95 m单位面积发热量平均值为7 139 kJ/m2。油松林1 h时滞可燃物载量显著高于10 h时滞和灌层可燃物载量。在1 h时滞可燃物含水率为6%,风速为40 km/h的强风和干旱天气条件下,油松林地表火蔓延速度平均值为15.1 m/min,火线强度平均值为3 278.5 kW/m,火焰高度平均值为3.1 m,单位面积发热量平均值为12 337.5 kJ/m2。结论油松林内1 h时滞细小可燃物载量高于其他类型可燃物载量。地表火蔓延速度慢,火强度低,火焰高度低于第一枝下高,在正常天气条件下容易被扑灭。模拟结果表明油松林在低含水率的条件下,风速会显著增加地表火蔓延速度,难以人为扑灭,需清理地表可燃物,降低火险。   相似文献   

7.
研究地表火蔓延过程中火线提供给地表面的辐照度,探讨风速、坡度对它的影响。通过火焰特征的分析,建立火线火焰区的热辐射模型,推导火线给地表面的辐照度的计算公式;提出用火焰平均高度作为长度单位,定义火环境的空间参数(ξ、η、ζ)和火环境的辐射场空间属性函数f(ξ,η,ζ),推导火焰覆盖区的辐照度的计算公式。结果表明:火线提供给地表面的辐照度和火焰表面温度、火强度、火焰平均高度、考察点的位置等因素有关,它受风速、坡度因素制约。火线逼近可燃物的暂短时间内,太阳给地表面的辐照度可以忽略不计。  相似文献   

8.
[目的]灌木林内植被生长连续、多藤蔓附生,在垂直、水平方向分布紧密,可燃物负荷量大,燃烧蔓延速率快、火强度高.柞木是云南省典型灌木林植物代表,开展燃烧蔓延及释烟特征研究可为灌木林火防治提供科学依据,减少灌木林火发生频率,保护森林资源.[方法]以云南省局部山地地形、柞木植被数据为基础,利用Fire Dynamics Simulator(FDS)建立微观山体柞木林模型,设置5种坡度(0°、15°、25°、35°、45°)、2个火源位置(火源1、2分别位于坡度15°、0°),分别模拟4种风速(0 m/s、1.5 m/s、2.5 m/s、3.5 m/s)条件下柞木林火燃烧,研究柞木林火燃烧蔓延规律、温度变化趋势、CO浓度、CO2浓度、烟气流速、烟气热辐射.[结果]微观柞木林模型燃烧约100 s趋于稳定,风速≤2.5 m/s的初始燃烧阶段,坡度15°与25°、35°与45°区域燃烧温度几乎同时达到反应温度300℃,柞木林火在以上连续坡度范围内蔓延速度更快;火源1为起火点时,25 s内,3.5 m/s风速时坡度15°区域为主要蔓延位置;平地内燃烧温度可达2000℃、烟气热辐射量为1500~1700 kW/m2、烟气流速约15 m/s,均高于其它坡度;下山火受逆风影响蔓延较为困难,风速3.5 m/s时下山火发生概率较小;在柞木林火模拟过程中,烟气流速与坡度呈负相关,坡度增加风速降低,烟气流速越小;烟气热辐射的初始上升速率较为缓慢,150 s左右数值变化趋于稳定.[结论]FDS软件模拟微观柞木林模型燃烧与实际火灾发生蔓延状况大致相同,可作为森林火灾燃烧蔓延规律及烟气释放特征研究的有力工具.模拟结果可为柞木林火预防、扑救提供科学指导,有效提高森林防火的工作效率.  相似文献   

9.
[目的]灌木林内植被生长连续、多藤蔓附生,在垂直、水平方向分布紧密,可燃物负荷量大,燃烧蔓延速率快、火强度高.柞木是云南省典型灌木林植物代表,开展燃烧蔓延及释烟特征研究可为灌木林火防治提供科学依据,减少灌木林火发生频率,保护森林资源.[方法]以云南省局部山地地形、柞木植被数据为基础,利用Fire Dynamics Simulator(FDS)建立微观山体柞木林模型,设置5种坡度(0°、15°、25°、35°、45°)、2个火源位置(火源1、2分别位于坡度15°、0°),分别模拟4种风速(0 m/s、1.5 m/s、2.5 m/s、3.5 m/s)条件下柞木林火燃烧,研究柞木林火燃烧蔓延规律、温度变化趋势、CO浓度、CO2浓度、烟气流速、烟气热辐射.[结果]微观柞木林模型燃烧约100 s趋于稳定,风速≤2.5 m/s的初始燃烧阶段,坡度15°与25°、35°与45°区域燃烧温度几乎同时达到反应温度300℃,柞木林火在以上连续坡度范围内蔓延速度更快;火源1为起火点时,25 s内,3.5 m/s风速时坡度15°区域为主要蔓延位置;平地内燃烧温度可达2000℃、烟气热辐射量为1500~1700 kW/m2、烟气流速约15 m/s,均高于其它坡度;下山火受逆风影响蔓延较为困难,风速3.5 m/s时下山火发生概率较小;在柞木林火模拟过程中,烟气流速与坡度呈负相关,坡度增加风速降低,烟气流速越小;烟气热辐射的初始上升速率较为缓慢,150 s左右数值变化趋于稳定.[结论]FDS软件模拟微观柞木林模型燃烧与实际火灾发生蔓延状况大致相同,可作为森林火灾燃烧蔓延规律及烟气释放特征研究的有力工具.模拟结果可为柞木林火预防、扑救提供科学指导,有效提高森林防火的工作效率.  相似文献   

10.
森林火灾包括地表火、地下火、树冠火,其中地表火发生最为频繁.以大兴安岭地区兴安落叶松人工林为研究对象,通过野外调查数据,应用Behaveplus软件和SPSS三因素方差分析方法,分析不同地类、不同可燃物湿度以及火焰平均风速对各火行为指标的影响.结果表明:地类、可燃物湿度以及火焰平均风速对兴安落叶松人工林地表火的蔓延速率、火线强度、火焰长度、单位面积热量的影响都具有显著差异(P<0.05);火行为指标随可燃物湿度的增加而降低,随火焰平均风速的增加而升高(单位面积热量除外);在所有影响因素下,有坡山地和农用地的火行为指标都相对较高.  相似文献   

11.
基于Rothermel模型的北京鹫峰国家森林公园潜在火行为   总被引:4,自引:0,他引:4  
Rothermel模型以燃烧物理学为理论基础,基于能量守恒定律,属于物理机理模型。基于Rothermel模型,利用BehavePlus 5.0 5软件,采用自定义可燃物参数模型,通过输入不同的可燃物模型参数,包括不同时滞的地表枯枝负荷量、可燃物床层厚度、含水率、热值、风速、坡度等,研究计算了不同可燃物湿度条件下北京鹫峰国家森林公园潜在地表火行为状况,即蔓延速率、单位面积发热量、火线强度和火焰高度等。结果表明:4种林型火行为指标均随可燃物湿度、坡度增大而降低,油松Pinus tabuliformis林极易发生高强度地表火,侧柏Platycladus orientalis林易发生中强度地表火,华北落叶松Larix principis-rupprechtii因本身难燃,仅可能发生低强度地表火,栓皮栎Quercus variabilis林因地表凋落物累积较多,且林分通风条件好,在低湿度、干旱条件下易发生中等强度地表火,对林分结构造成破坏。因此,在护林防火工作中,我们要以油松、侧柏林防火为主,及时清理林下有效可燃物,减少可燃物累积,防止林火的发生与蔓延,最大程度减少森林资源损失。图5表3参19  相似文献   

12.
  目的  地表火是最常见的林火类型,直接影响植被更新和生态系统的养分配置与循环。反映林火行为的常见指标有火蔓延速度、单位面积发热量、火强度和火焰高度。根据实际林分和立地条件进行火行为模拟,可以揭示林火发生条件,并有效判断树冠火发生的可能性,为林火的预防和扑救决策工作提供科学依据。  方法  选取北京市门头沟典型林分(刺槐林、油松林、侧柏林)为调查对象,每个林分设置5块样地,共计15块样地。通过野外调查获取可燃物载量(灌木可燃物、草本可燃物、1时滞可燃物、10时滞可燃物、100时滞可燃物)、林分因子(第一活枝下高、第一死枝下高、树高、胸径、郁闭度)和立地因子(海拔、坡度、坡向、坡位)数据,使用BehavePlus6软件,基于气象参数和可燃物参数,模拟不同燃烧条件下不同林分类型的火行为指标,分别为地表火蔓延速度、单位面积发热量、火线强度和火焰长度;使用R语言进行主成分分析,根据贡献率探讨林分因子、立地因子和可燃物因子对火行为的潜在影响。  结果  侧柏林、刺槐林和油松林的可燃物总载量分别为15.35、17.59、15.28 t/hm2,其中易燃可燃物载量(即上层枯叶、易燃草本、1 时滞可燃物)分别是4.55、4.41、6.18 t/hm2,分别占林分总可燃物载量的29.6%、25.1%、40.4%。防火期内门头沟区的平均风速为2.2 m/s(7.9 km/h),地表火蔓延速度油松林 > 侧柏林 > 刺槐林,速度分别达11.5、11.1、8.0 m/min。单位面积发热量油松林 > 侧柏林 > 刺槐林,分别为23 091、21 155、18 413 kJ/m2;火强度油松林 > 侧柏林 > 刺槐林,分别为4 426、3 882、2 468 kW/m;油松林火焰高度变化范围分别是0.89 ~ 3.40 m、1.34 ~ 2.91 m、1.78 ~ 3.88 m,同等条件下火焰高度油松林 > 侧柏林 > 刺槐林;8级大风天气下(风速17.9 m/s,64.4 km/h),地表火行为的模拟结果会略有改变,侧柏林的火蔓延速度更快、火强度更高,油松林、刺槐林次之。根据主成分分析的因子贡献度,分别得出影响3种林分火行为的主成分,侧柏林、刺槐林与油松林的第1与第2主成分分别为可燃物构成(可燃物载量及影响其分布的地形因素)与林分因子、可燃物构成与可燃物含水率、林分因子与可燃物含水率。  结论  (1)易燃可燃物载量是影响林分火行为的关键因子。(2)可燃物含水率对火行为指标的数值起决定作用,可燃物含水率的临界值影响林火发生类型。可燃物湿润时无论风速大小,林地难以起火;可燃物干燥时处于易燃状态,大风天气时容易发生蔓延快、强度高的地表火。(3)可燃物连续性是决定地表火发展成为树冠火的关键因素,火焰高度大于第一活/死枝下高,极有可能从地表火发展成为树冠火,扑救难度极大。建议需定期修枝割灌,清理林下可燃物,降低火险。   相似文献   

13.
大兴安岭林区草甸火顺风蔓延模型的研究   总被引:5,自引:0,他引:5  
根据1981~1983年在大兴安岭地区测得的草塘沟火烧试验数据,对影响草甸火蔓延的几个重要因子(风速、可燃物含水率、大气温度、相对湿度和可燃物干重量)进行了多元线性回归分析。分析结果表明,风速(V)和可燃物含水率(M)对火蔓延起决定性作用。据此,利用该二项因子V和M进行了二元线性回归,建立草甸火顺风蔓延速度预测模型:R=0.3370+0.0660V-0.0052M。复相关系数R_0=0.818。此模型可为大兴安岭林区火烧防火线安全用火,合理调配点火与扑火力量提供科学参考依据。  相似文献   

14.
  目的  研究不同间伐强度对北京西山试验林场侧柏林冠层可燃物特征及其潜在火行为的影响,为冠层可燃物调控和预防高能量连续型树冠火的发生提供参考。  方法  以北京西山试验林场侧柏为研究对象,设置3种间伐强度(低15%、中35%、高50%,均为株数强度)的处理,并设置对照样地,每种处理设置3块重复样地。基于标准枝法所调查冠层可燃物参数(枝条数量、长度、基径),对冠层可燃物载量建立线性回归模型,进一步计算冠层容积密度。通过单因素方差分析探讨不同间伐强度对冠层可燃物特征(冠层可燃物载量、冠层容积密度)的影响。利用Behave Plus 5.0软件,分别根据样地可燃物含水率和气象条件设置中度湿度条件和10 m高空风速(0 ~ 18 m/s),探讨不同间伐强度对树冠潜在火行为指标(树冠火蔓延速率、火线强度、火焰长度、单位面积发热量等)的影响,并依据树冠火转化模型研究抚育间伐对连续型树冠火发生的影响。  结果  (1)林分冠层可燃物特征在不同间伐强度下存在差异,中度间伐强度下与未间伐样地差异最显著,冠层可燃物载量、冠层容积密度随着间伐强度的增加而减少,冠层可燃物载量由3.280 kg/m2减少到0.540 kg/m2,冠层容积密度由0.478 kg/m3减少到0.056 kg/m3。(2)不同间伐强度下林分冠层可燃物载量、冠层容积密度垂直分布特征为随树高的增加而先增加后减少。(3)树冠潜在火行为指标在中度间伐强度下与未间伐样地差异显著,其中火线强度、火焰长度以及单位面积发热量随间伐强度的增大而减小,树冠火蔓延速率在抚育间伐后小于未间伐样地,但不随间伐强度的变化而变化,临界树冠火蔓延速率随间伐强度的增大而增大。在未间伐、低度间伐强度下样地将发生连续型树冠火,中度、高度间伐强度样地不发生;随着间伐强度增大,发生连续型树冠火时所需10 m高空风速由6 m/s逐渐增大到8 m/s,火线强度由6 930 kW/m减少到5 829 kW/m,火焰长度由9.7 m减少到8.6 m,单位面积发热量由47 817 kJ/m2减少到40 667 kJ/m2,树冠火蔓延速率由8.7 m/s增加到8.9 m/s。  结论  抚育间伐影响冠层可燃物特征、树冠潜在火行为指标。中度间伐强度对冠层可燃物特征和树冠潜在火行为指标影响显著,通过减少冠层容积密度,可以有效降低树冠潜在火行为,避免连续型树冠火的发生。综合考虑经济效益和生态效益,在对侧柏林进行冠层可燃物调控时建议采取中度间伐处理。   相似文献   

15.
以红松人工林的针叶为材料,在实验室内,根据之前平地无风研究的试验设计,构建不同载量、高度和含水率的可燃物床层。在各层级风速条件下,共进行100次平地点烧试验。结果表明,风速在0.9~4.6 m/s时,红松针叶床层的火强度风因子为1.769~6.708。床层压缩比、含水率对预测结果影响显著,床层载量与床层高度对预测结果影响不大。  相似文献   

16.
北京山区主要针叶林潜在火行为及冠层危险指数研究   总被引:2,自引:2,他引:0  
目的树冠火作为一类对森林生态系统特别是针叶林造成严重损害的森林火灾, 一旦发生树冠火, 其在林火蔓延过程中起主导作用。通过对针叶林潜在火行为大小和冠层危险指数的探究, 以及其在一天中的变化情况, 了解树冠火危害大小及发生的条件, 为预防及扑救林火提供科学依据。方法本文以北京山区主要的针叶树种油松和侧柏作为研究对象, 通过对2种林分可燃物的载量、理化性质、分布规律的调查, 计算林分潜在火行为随风速变化的趋势, 并利用树冠火发生和发展的气象因子临界指标来建立冠层危险指数。最终, 结合该地区的气象资料, 选取外业调查期间的2 d为例, 计算冠层危险指数, 判断2种林分可能发生树冠火的类型、时间、持续时长以及林分潜在火行为大小。结果2种林分的理化性质差距较小, 但冠基高度上相差较大; 在高风速(40 km/h)天气下, 油松林发生连续型树冠火, 蔓延速度和火线强度分别为17.0 m/min、16079 kW/m, 侧柏林发生间歇型树冠火, 蔓延速度和火线强度分别为11.4 m/min、5290 kW/m, 油松林和侧柏林分别在风速为30、37 km/h时达到高强度火; 油松林的冠层危险指数TI(torching index)和CI(crowning index)值随时间分别在17.1~29.6 km/h和33.9~38.8 km/h范围内波动, 侧柏林的波动范围分别为11.9~21.1 km/h和47.5~54.9 km/h, 油松林在48 h内发生地表火、间歇型树冠火、连续型树冠火的时间占比分别为87%、9%、4%, 其最高速度和火焰最大强度分别为17.5 m/min、8598 kW/m, 而侧柏林只能发生地表火和间歇型树冠火, 其比例为56%、44%, 最大潜在火行为指标分别为14.5 m/min、4506 kW/m。结论2种林分中, 冠基高度是树冠火发生最主要的影响因素之一; 林分整体潜在火行为随风速变化明显, 且能在5级风速下形成高强度森林火灾; 侧柏林更易形成树冠火, 油松林发生极高强度火灾的可能性大。   相似文献   

17.
杉木人工林地表易燃物含水率变化规律   总被引:25,自引:0,他引:25  
设立标准地,测定杉木人工林内地表易燃物的含水率与林内气象因子及地表可燃负荷量的关系,应用回归分析,建立数学模型.结果表明,影响地表易燃物含水率的主要因子依次是:相对湿度>风速>地表可燃物负荷量>气温.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号