首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
正溶解氧是养殖鱼、虾、蟹等水生动物生存的必要条件,溶解氧的多少影响着养殖水生动物种类的生存、生长和产量。采用有效的增氧措施,是提高池塘养殖单位产量和效益的重要手段。1池塘微孔增氧的概念池塘微孔增氧技术就是池塘管道微孔增氧技术,也称纳米管增氧,是近几年涌现出来的一项水产养殖新技术,是国家重点推荐的一项新  相似文献   

2.
宁夏精养池塘以前一直是采用叶轮式增氧机增氧方式养殖,最近几年养殖池塘引进新型增氧方式——微孔管道增氧。为证明两种增氧方式那种更加有利于池塘养殖,笔者与相关同事于2014年5月份在宁夏泰嘉渔业有限公司进行了2种增氧方式对水产养殖的效果实验。并将试验结果总结如下,供同行们参考。  相似文献   

3.
为满足现代智能化水产养殖中随时随地掌控池塘水质参数的需求,本研究开发了一种基于Android平台的池塘养殖水质远程监控系统,实现了对溶解氧等环境参数的远程采集,同时也实现了对多控制节点的远程控制。系统控制部分采用8051微处理器进行数据的采集和处理,使用GSM(Global System for Mobile Communication)短信的方式来与基于Android客户端的无线通信,实现用户对池塘溶解氧情况的远程实时控制。此外,系统还具有统计功能,以方便用户了解池塘变化情况。  相似文献   

4.
水产养殖池塘中溶解氧的变化及调控   总被引:1,自引:0,他引:1  
水产养殖对池塘水环境有着较为严格的要求,强调池塘水溶氧量的合理性。阐述了池塘水溶解氧的水平、垂直、昼夜变化及调控措施,并在此基础之上,从季节变化、日变化2个方面,阐述了氧盈与氧债的变化规律及调控对策,旨在强化对水产养殖池塘溶解氧变化的认识,并为今后相关领域的研究提供一定的参考资料,从而推动水产养殖技术不断发展。  相似文献   

5.
随着我国规模化、集约化和产业化淡水水产养殖的迅速发展,水产养殖的混养、套养等高产高效的技术也得到了广泛的推广与应用,这对传统机械增氧技术提出了更高的要求。本文对机械增氧设备的主要类型及工作原理进行了分析,然后说明了淡水水产养殖中机械增氧技术的应用现状与几种机械增氧方式在池塘养殖中的增氧性能比较,对淡水水产养殖中机械增氧技术的发展趋势做了展望。  相似文献   

6.
设计了一套水产养殖智能管理系统,该系统将物联网技术和水产养殖技术较好地融为一体,通过分布于池塘各处的传感器完成对溶解氧、pH和水温信息的采集,采集到的信号经过放大调理后经由ZigBee无线通信技术上传至主控制器,系统的主控制器为工业控制计算机,计算机系统上装载了由JAVA语言编写的人机交互系统,该系统主导整个管理系统的运行,在接收到上传的数据后,能够实时显示、存储和分析计算接收到的数据,并根据计算结果给出控制命令,然后经由无线通信系统将其发送给下位机(PLC),下位机控制相应地设备动作,进而完成对水质因子的调节,实现智能管理的目的 。  相似文献   

7.
2010年8月对三疣梭子蟹4种不同养殖模式池塘溶解氧含量进行连续24 h的观察,分析不同养殖模式水体中溶解氧含量的昼夜和垂直变化特征。结果表明:表层溶解氧在4种养殖模式池塘中昼夜变化规律基本一致,表现为下午最高,凌晨最低,白天高于夜间;底层溶解氧,在有机械增氧的三种养殖模式中,昼夜变化规律与表层基本一致,与之相反,无增氧的条件下,其溶解氧变化呈夜间高于白天的状态。溶解氧的垂直变化,均为中午表层高于底层,尤以传统养殖更为显著;夜间垂直变化相对较少。通过对3种增氧模式的增氧效果的比较分析,以高位池精养模式效果最好,底充氧模式稍差。同时探讨了溶解氧与水深和光照等环境因子的关系,认为夏季在梭子蟹养殖生产中,如未配置增氧设施,水位应控制在1.0 m左右为宜。  相似文献   

8.
喷灌机智能监控系统由环境监测传感设备、数据传输处理网络以及终端智能控制平台组成。本文阐述了喷灌机智能监控系统的设计与研究。该系统以控制芯片为核心,对现场设备的运行状态进行数据采集,将采集到的数据通过通信模块传递到数据传输处理网络,数据传输处理网络会将相关数据整合分析,将有效的数据发送给客户端,这样相应客户端与服务器建立连接,通过调取数据对设备运行状态进行实时显示,并通过终端智能控制平台采取相应措施解决问题。  相似文献   

9.
工厂化水产养殖溶解氧自动监控系统的研究   总被引:5,自引:0,他引:5  
为以曝气增氧方式的养殖系统(养殖平均体重为450 g的虹鳟Oncorhynchus mykiss,养殖密度为27kg/m3)设计了在线自动监控系统,即对水体溶解氧进行在线监测,对增氧设备进行自动控制。该监控系统是以覆膜溶解氧电极作为检测元件,用组态王软件设计在上位机中运行的监控系统完成在线检测,以PLC为下位机直接控制增氧气泵实现溶解氧控制功能。结果表明:该溶解氧在线自动监控系统能直观地在计算机屏幕上显示养殖现场溶解氧的变化情况,并可以储存、打印、记录溶解氧的变化数值,为掌握溶解氧的变化规律,分析溶解氧产生变化的原因提供基础数据。对增氧设备进行控制,可确保水体中的溶解氧维持在适合鱼类生长的最佳范围内,减少了设备的运行时间,降低了生产过程的能源消耗,取得了较好的效果。  相似文献   

10.
《天津农业科学》2017,(12):26-30
利用现有的物联网技术,结合天津当地水产的实际设计实现了一套智能渔业监控养殖系统。该系统利用STC12C5A60AD/S2单片机设计了采集控制终端,用于采集水产养殖池塘的氨氮、pH、溶解氧等水质信息,使用球机采集养殖水域的图形信息,这些信息经过初步处理之后通过构造的局域网上传给控制决策中心的服务器;控制决策中心的大屏实时显示养殖水域信息并根据具体情况作出对应的控制决策,将控制指令发送至采集控制终端,进而控制投料机喂食和增氧机增氧,保障养殖水域的水质,提高产量和品质。在严重异常情况发生时作出报警,防止巨大的财产损失,确保养殖安全。该系统经过现场的实际使用,具有很好的适应性和可靠性。  相似文献   

11.
随着信息技术和规模化水产养殖的发展,传统的养殖模式将会逐渐被智能水产养殖所取代。构建了基于Zigbee的中华绒螯蟹养殖中溶氧量的智能控制系统,并着重研究了蟹塘的增氧控制算法,针对溶氧量变化的非线性、大滞后、不确定、大惯性等特点,提出了模糊RBF神经网络改进的PID控制策略,并通过Matlab进行模糊RBF神经网络控制器与常规PID控制器和模糊PID控制器进行仿真对比,同时在某中华绒螯蟹养殖基地进行模糊PID控制器和模糊RBF神经网络控制器进行应用实验对比,证明了模糊RBF控制器能够更好地满足中华绒螯蟹养殖溶氧量的控制要求。  相似文献   

12.
系统设计为集成传感器清洁装置的水产养殖环境远程测控系统,设计采样箱将传感器数据采集及清洁装置集成一体;采用PLC为主控制器,完成对传感器清洁系统、增氧泵、采样水泵等可执行装置的控制;现场人机交互选用MCGS触摸屏,触摸屏作为主机,通过485总线实时采集传感器数据,实现测试数据的实时显示、储存及历史信息统计;PLC与触摸屏之间通过RS232总线通讯交换数据,同时PLC与GPRS模块GRM200G通过485总线通讯,将现场信息传到服务器,实现远程监控。试验结果表明,系统运行稳定可靠,操作界面友好,实现了对水产养殖水质参数的实时监测与远程监控。  相似文献   

13.
本文通过分析海参苗养殖现状,设计了一种基于无线传感网络的海参苗养殖环境监测系统。通过在监测区域部署传感器节点,监测养殖池中的的温度、盐度、溶解氧及水位等环境参数。将检测到的数据无线发射到远程监测软件,监测软件将分析结果反馈给末端执行机构,实现对养殖池环境的实时监控。本文从系统结构和数据传输等方面进行了阐述,对海参苗养殖的自动化生产提供了一种有效可行、成本较低的解决方案。  相似文献   

14.
良好的水体水质是池塘健康养殖的基础,为了实现监测和采样的自动化,设计了一体化无人水质监测船并进行了性能试验。兼顾水质监测与采样需求,对船体结构进行设计,考虑承重和稳性对船舱传感器与采样、电源与控制盒、水样采集瓶功能区进行布局设计,基于双螺旋桨差速驱动模型融合GPS和姿态传感器开发了自主巡航控制系统,应用物联网技术集成水质采样控制系统和水质监测数据平台。综合试验结果表明:无人船行驶轨迹准确,监测点位最大偏差量为1.49m,最小偏差量为0.39m,平均偏差量为1.003m;监测及采样功能稳定,可实时回传水体的pH值、温度和溶氧数据,6只500mL水样采集瓶能够实现符合国家标准的水下50cm精准取样。研究结果为水产养殖全水面水质监控提供了一种低成本高可靠的实施方案。  相似文献   

15.
鱼塘溶氧自动控制系统可根据测量到的鱼塘溶氧值实现增氧泵自动开启,从而获得较为稳定的鱼塘养殖环境,保证鱼类正常生长。系统采用STC12C5A16S2单片机控制,应用TC35i通讯模块实现远程信息手机接收与遥控操作。控制器具有溶氧控制值可设定、能测量溶氧及温度数值、自动启停增氧泵、异常温度短信提醒等功能。  相似文献   

16.
Continuous move irrigation systems have been modified since the 1990s to support variable rate irrigation. Most of these systems used PLC (Programmable Logic Controllers) technology that performed well for on-site control but were very expensive to add remote, real-time monitoring and control aspects that have been made possible by wireless sensor networks and the Internet. A new approach to the monitoring and control of continuous move irrigation systems is described. This system uses a Single Board Computer (SBC) using the Linux operating system to control solenoids connected to individual or groups of nozzles based on prescribed application maps. The main control box houses the SBC connected to a sensor network radio, a GPS (Global Positioning System) unit, and an Ethernet radio creating a wireless connection to a remote server. A C-software control program resides on the SBC to control the on/off time for each nozzle group using a “time on” application map developed remotely. The SBC also interfaces with the sensor network radio to record measurements from sensors on the irrigation system and in the field that monitor performance and soil and crop conditions. The SBC automatically populates a remote database on the server in real time and provides software applications to monitor and control the irrigation system through the Internet.  相似文献   

17.
传统大型水产养殖场凭养殖户的经验,通过观察水体颜色、鱼类异常行为以及闻水味的方式监测水质,导致监测随意性大、出错几率高、费时费力,因此设计了基于Zig Bee无线网络的水质管理系统,该系统以德州仪器CC2530芯片为核心构建了一个无线传感网络,该网络可实时采集监测点温度、溶解氧含量、p H、亚硝酸盐浓度、浊度等数据,并传送到PC上位机。PC上位机同时依据水质情况,通过SMT32F101控制器控制供氧泵,水阀、投饵机等设备,及时对水质异常等状况进行及时处理。试验表明,水质数据的传输速率可达到140 kb,有效传输距离在150 m以上,系统具有可扩展性强、功耗低、稳定性高等特点,能够满足水质监控、增氧、定时投饵、病害防治方面的功能要求。  相似文献   

18.
水体流动是池塘水质调控的基础性条件,高效率的水动力形成与控制具有重要价值。偏心式水动力装备从增氧和水动力形成两个方面达到了较好的平衡,基于池塘精细化生态因子调控的需求,本文研发了包含传感器、数据处理、存储、输出及无线通讯模块的控制硬件系统,开发了基于溶氧和水动力双参数的控制算法,并具备弱电自主检测和强电断路校核功能以增强系统的可靠性。控制系统通过实时监测溶氧值,结合水动力设备不同功率的作用范围,实现了具有一定自适应能力的功率输出控制,从溶氧、水动力范围及能耗的角度实现综合性效果。现场试验表明,根据池塘生态因子变化规律,在满足池塘增氧需求的前提下,基于所开发控制系统的偏心式水动力装备与同功率的其它增氧设备相比,水动力流速衰减更慢,设备周边同范围内水动力提升效果明显,综合能耗下降约24%。该控制系统的设计和实现为偏心式水动力装备的推广应用打下了良好基础。  相似文献   

19.
采用物联网技术和Android开发技术,设计智能植物生长柜的软件控制系统,实现利用网络对智能植物生长柜的环境进行实时的监控和对植物生长过程全周期的连续监测,同时利用服务器数据库对历史数据存储,对农业作物的生长习性研究具有一定的现实意义。本文介绍智能植物生长柜的软件系统,该系统包括了物联网设计和Android软件设计。系统采用Android SDK+JAVA JDK7+Eclipse6.0编写安卓软件控制程序,服务器端采用JSP开发MVC框架编程,同时设计实验实时获取植物生长的参数信息,利用服务器数据库对历史数据存储,实现较高的可追溯性,系统不受时间地域限制,用户可以在任何具备网络覆盖的地方通过手机或者浏览器浏览并获取数据。系统可以实现对生长柜传感器节点的信息远程采集和数据显示,同时对多控制节点的远程控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号