首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 164 毫秒
1.
无人机喷雾雾滴分布研究   总被引:1,自引:0,他引:1  
利用植保无人机系统研究雾滴沉积分布情况及田间药效。雾滴分布试验以水敏试纸为靶标,探究不同作业状态及环境下雾滴沉积分布情况。利用植保无人机开展田间飞防试验,对比田间杂草防效,分析植保无人机最佳作业状态。结果表明,飞行高度、飞行速度、喷液流量、空气湿度、温度、风速与农药雾滴沉积分布及农药药效呈正相关,其中,飞行速度、喷雾流量、温度在一定范围内对农药雾滴沉积分布及农药药效影响不显著。植保无人机田间飞防作业时,应避免高温干旱、风速较高天气,建议无人机作业状态为:飞行高度1 m,飞行速度5 m·s-1,喷液流量1 800 m L·min-1。  相似文献   

2.
本研究选取无人机的主要飞行参数为飞行高度、飞行速度及喷洒用量为变量,利用3WDM4-10型植保无人机开展飞行作业,利用水敏纸测定作业过程中的雾滴量,并借助雾滴分析仪和理论模型对数据进行分析,研究飞行高度、飞行速度和喷洒用量对飞行作业重量的影响。结果表明,飞行高度、飞行速度、喷液流量对雾滴沉积均有影响。其中,飞行高度在一定范围内对雾滴沉积效果影响显著,飞行速度及喷雾流量在一定范围内对雾滴沉积效果影响不显著;在飞行高度2.0 m、飞行速度5.0 m/s、喷洒用量15.0 L的飞行参数下,雾滴密度为42.62个/cm2,此效果更加适合实际的作业要求。该研究可为以后的生产实践提供参考。  相似文献   

3.
【目的】探索小型植保无人机对果树喷施作业的雾滴沉积分布效果及应用前景,研究小型植保无人机喷雾参数对橘树冠层雾滴沉积分布的影响。【方法】采用三因素(飞行高度、飞行速度、喷施流量)的正交试验,应用小型六旋翼植保无人机进行喷雾试验。【结果】根据雾滴沉积密度和雾滴沉积均匀性结果,较佳的作业参数是喷头流量1.0 L·min~(-1)、作业高度2.5 m、作业速度4 m·s~(-1),影响雾滴沉积密度的主次顺序依次为作业速度、作业高度、喷头流量;根据雾滴沉积穿透性结果,作业高度均为2.0 m的试验号2(作业速度4 m·s~(-1),喷头流量0.6 L·min~(-1))和试验号8(作业速度1 m·s~(-1),喷头流量1.0 L·min~(-1))中雾滴沉积穿透性分别为22.21%和22.41%,其雾滴覆盖密度大且穿透性较好;影响雾滴沉积穿透性的因素主次顺序为作业高度、作业速度、喷头流量。【结论】针对植保无人机旋翼风场的影响和橘树独特的树形结构,对植保无人机的作业参数进行了优选,以保证航空喷施作业雾滴在橘树冠层的有效沉积分布。本试验研究可为小型无人机对果树的合理喷施、提高喷施效率提供参考和指导。  相似文献   

4.
为探索无人机喷雾参数对雾滴在香梨花期冠层沉积分布的影响,以密植库尔勒香梨为试材,选用四旋翼电动植保无人机为喷施器械,采用三因素(飞行高度、亩喷液量、飞行速度)三水平正交试验方法,以授粉液雾滴沉积密度、均匀性及雾滴覆盖率为评价指标,进行了无人机喷雾参数对雾滴在香梨花期冠层沉积分布的影响试验。结果表明,雾滴沉积密度和均匀性以处理6的飞行参数较优(飞行高度1.5 m、亩喷液量4.0 L/亩、飞行速度3.0 m/s),从雾滴沉积密度极差分析结果可以看出,影响雾滴沉积密度的主要因素依次是亩喷液量、飞行高度、飞行速度。  相似文献   

5.
近年来,无人机在植保领域的应用越来越广泛,农业植保无人机无论是在便利性还是在喷洒效果方面都具有更显著的优势。目前无人机喷洒系统主要采用分档式调节流量的喷洒技术,这种技术在一段飞行速度区间使用同一档位进行喷洒作业,喷洒均匀性有待提升。通过设计变量喷洒系统的主控电路、隔离电路等完成了变量喷洒平台的硬件搭建工作。针对飞行速度对喷洒均匀性的影响提出了一种提高植保无人机喷洒均匀性的PID流量控制算法,通过调节占空比实现了变量喷洒系统的软件功能。在无人机飞行速度从1 m/s增加到5 m/s的过程中,设计了分档式算法和PID流量控制算法的变量喷洒对照试验,通过水敏纸的雾滴图像信息来分析喷洒作业的效果。结果表明,在飞行速度从1 m/s增加到5 m/s的过程中,经过流量PID调节的植保无人机喷洒覆盖率整体波动范围较小(范围在20.9%~24.4%之间),相比之下分档式植保无人机的覆盖率波动范围略大(范围在20.1%~29.8%);同时验证了变量喷洒系统软硬件的可行性,该变量喷洒系统实现了喷洒流量随飞行速度自动调整的功能,提升了喷洒的整体均匀性,能够满足小面积作业的基本要求。  相似文献   

6.
【目的】研究植保无人机喷施作业雾滴的沉积分布规律和病虫害防治效果,为植保无人机田间作业提供理论依据和技术支持。【方法】使用无人机和喷杆喷雾机进行喷施试验,以卡罗米特纸卡和滤纸作为取样器采集雾滴,研究雾滴在棉花冠层的沉积规律,比较两种植保机械的病虫害防治效果。【结果】在有效喷幅范围内,无人机喷施作业雾滴主要集中在棉花冠层上部,棉花冠层中部和下部雾滴沉积量和覆盖率均较低;无人机施药雾滴在上风向和下风向的飘移量有显著差异,上风向雾滴平均飘移百分比为4.93%,下风向平均飘移百分比为14.96%,且波动较大;JT-30植保无人机和3W-1000Y悬挂式喷杆喷雾机在施药7 d后对棉蚜防治效果较好,在施药后15 d对棉叶螨防治效果较好。【结论】雾滴在棉花冠层的穿透性较差,下风向雾滴飘移现象较突出,对蚜虫的防治效果较好。  相似文献   

7.
温室自动变量施药系统设计   总被引:6,自引:2,他引:4  
针对温室内手动施药喷雾质量差、容易造成施药人员中毒的问题,基于AT89S52单片机开发环境设计温室自动变量施药系统;研究了喷杆行走速度和喷头流量对作物单位面积雾滴沉积量的影响。实验结果表明:所设计的温室自动变量施药系统可根据上位机对CCD采集的病害信息处理结果,对喷杆行走速度和喷头流量进行控制,实现无人自动变量施药;在喷头型号、喷雾压力一定的条件下,改变喷杆行走速度和喷头流量可使单位面积雾滴沉积量的变化范围为0.27~0.76μg/cm2,很好地实现了自动变量喷雾;单位面积雾滴沉积量与喷杆行走速度和喷头流量均呈线性关系,相关系数R2均大于0.99。  相似文献   

8.
植保无人机水稻田间农药喷施的作业效果   总被引:9,自引:1,他引:8       下载免费PDF全文
【目的】测试和对比电动单旋翼与电动多旋翼植保无人机在水稻田间的作业效果。【方法】测试的植保无人机为HY-B-15L型单旋翼植保无人机(单旋翼机)和MG-1S型多旋翼植保无人机(多旋翼机)。以一定比例的罗丹明B与善思纳米农药的混合溶液作为喷施溶液,通过改变无人机作业高度和农药喷洒量进行田间喷施试验,采用荧光示踪剂法和水敏纸图像分析法获得2种无人机在不同喷施条件下喷施的雾滴在靶标上的沉积效果。按田间药效调查准则,调查不同处理下的纳米农药对水稻病虫害的防治效果。【结果】2种无人机喷施的雾滴在各采样点上的沉积量随农药喷洒量的增加而增加,当农药喷洒量为66.67和100.00 mL·hm~(–2)时,单旋翼机在各采样点上的沉积量比喷洒量为46.67 mL·hm~(–2)时的分别增加了48.50%和137.73%,多旋翼机分别增加了66.60%和111.88%。作业高度影响了无人机喷施雾滴在采样点上的沉积量和沉积均匀性,当作业高度由1.5 m增加至2.5 m时,单旋翼机喷施的雾滴在采样点上的沉积量和沉积均匀性分别降低了19.3%和53.6%、多旋翼机分别降低了48.7%和22.9%。在4种喷施条件下,单旋翼机在采样点上的沉积量比多旋翼机同条件下分别高出85.8%、26.5%、59.4%和123.4%。单旋翼机在1.5 m和46.67 mL·hm~(–2)作业条件下,农药对稻飞虱Nilaparvata lugens、稻纵卷叶螟Cnaphalocrocis medinalis、稻秆潜蝇Chlorops oryzae、细菌性条纹病及稻瘟病5种水稻病虫害的防治效果最好,防效分别为87.63%、76.67%、84.08%、59.26%和82.33%;多旋翼机在1.5 m和66.67 mL·hm~(–2)作业条件下,农药对上述水稻病虫害的防治效果最好,防效分别为86.54%、78.62%、89.47%、66.67%和83.33%。【结论】2种植保无人机由于旋翼风场不同,导致雾滴沉积效果不同,单旋翼植保无人机喷施效果更好;2种无人机喷施的农药最终对水稻病虫害的防治效果无明显差异,且防治效果均达到国家防效标准。  相似文献   

9.
采用小型多旋翼无人机,研究了药剂用量和喷头型号对玉米冠层的雾滴沉积分布的影响,并试验其在玉米锈病防治效果上的差异。研究结果表明,采用小型多旋翼植保无人机低空喷洒,在玉米植株的雾滴密度和沉积量为顶部(第一片叶)中部(第三片叶)下部(第五片叶)。植保无人机选择不同用量药剂和助剂兑水对玉米锈病进行喷雾试验时,助剂和飞行速度的变化影响雾滴密度和沉积量,添加助剂后可在减量30%时达到正常用药量防治指标,飞行速度的增大则导致防效下降。喷头型号的改变导致雾滴密度和沉积量差异较大,选择喷头LU 120 015时玉米锈病防治效果可达80%。  相似文献   

10.
喷雾器及施液量对水稻冠层农药雾滴沉积特性的影响   总被引:3,自引:0,他引:3  
【目的】分析弥雾机和手动喷雾器在不同施液量条件下喷雾,农药雾滴在水稻冠层沉积分布特征,阐明农药剂量的沉积结构及空间分布对药剂防治效果的影响。【方法】以农药雾滴采集装置和水敏纸收集农药雾滴,通过DepositScan软件分析雾滴覆盖率和雾滴密度,并利用示踪剂估测农药沉积量。【结果】弥雾机和手动喷雾器不同施液量条件下喷雾,叶角45°和0°水稻叶片正面的雾滴覆盖率显著高于叶片反面。弥雾机在225、450、600 L•hm-2施液量条件下喷雾,叶角0°水稻叶片反面的雾滴密度均大于200个/cm2,施液量间差异显著。手动喷雾器在600、900、1 200 L•hm-2施液量条件下喷雾,叶角0°和45°水稻叶片反面的雾滴密度均小于15个/cm2,施液量间无显著差异。相同剂量,弥雾机在450 L•hm-2施液量条件下喷雾,水稻冠层各位点上的农药沉积量最高;而手动喷雾器不同施液量条件下喷雾,水稻冠层各位点上的农药沉积量无显著差异。手动喷雾器喷雾叶片反面的农药沉积量均低于弥雾机喷雾。用15 g a.i.•hm-2氯虫苯甲酰胺防治纵卷叶螟,弥雾机在施液量450 L•hm-2条件下喷雾的防治效果最高,手动喷雾器在施液量1 200 L•hm-2条件下喷雾的防治效果最差。【结论】弥雾机和手动喷雾器稻田喷雾,农药雾滴在水稻叶片正面的覆盖率均高于叶片反面。弥雾机喷雾时增加施液量,能提高水稻叶片反面的雾滴密度和覆盖率;手动喷雾器喷雾时增加施液量,无显著效应。与手动喷雾器相比,弥雾机喷雾显著增加了叶片反面的雾滴密度、雾滴覆盖率及农药沉积量,能显著提高药剂的防治效果。  相似文献   

11.
植保无人机航空喷施飞行质量的试验与评价   总被引:1,自引:0,他引:1       下载免费PDF全文
【目的】植保无人机的飞行质量是航空喷施作业效果的重要影响因素。探讨不同类型和不同控制方式的植保无人机航空喷施作业的飞行质量和作业效果,为航空喷施作业机型的选择和植保无人机技术的改进提供数据支持和指导。【方法】采用微轻型机载北斗导航定位系统,获取半自主飞行控制模式下单旋翼油动植保无人机(SoUAV)、单旋翼电动植保无人机(Se-UAV)和半自动四旋翼电动植保无人机(Saqe-UAV)以及全自主控制模式下四旋翼电动植保无人机(Faqe-UAV)的飞行轨迹和飞行参数,并对飞行质量(包括飞行参数均匀性、航线精度和航线长度均匀性)进行了分析和评价。【结果】四旋翼植保无人机飞行质量优于单旋翼植保无人机,且Faqe-UAV飞行质量优于Saqe-UAV;Faqe-UAV在整个作业区域内的飞行参数变化的均匀性最佳,飞行速度和飞行高度参数变化的均匀性分别为3.66%和4.67%;Faqe-UAV的平均飞行航线偏差最小,为0.172 m。飞行方向对Saqe-UAV飞行参数的影响显著,但对Faqe-UAV飞行参数的影响不显著;航线长度对Faqe-UAV飞行参数的影响显著,但对SaqeUAV飞行速度的影响不显著。【结论】在航空喷施作业过程中,全自主控制方式下四旋翼电动植保无人机飞行质量最佳,对药液喷施质量更有保障。  相似文献   

12.
为探究多旋翼植保无人机作业参数对火龙果树冠层雾滴沉积分布的影响,应用极飞P20多旋翼植保无人机对火龙果树进行喷雾作业,采用正交试验对主要作业参数(航线方向、作业高度与作业速度)进行优选。结果表明,植保无人机对火龙果树施药在航线平行于种植行、作业高度为1.5 m (距离冠层顶部高度)、作业速度为1.5 m·s-1条件下,雾滴在火龙果树各个冠层的雾滴沉积密度,覆盖率最大。极差分析结果显示,作业速度是雾滴沉积密度和火龙果树上层雾滴覆盖率的最主要影响因素;而作业高度是火龙果树中层、下层雾滴覆盖率和雾滴分布均匀性的最主要影响因素,当作业高度为1.5 m 时雾滴分布均匀性最好。根据P20多旋翼植保无人机喷雾在火龙果树冠层的雾滴沉积分布情况,对植保无人机的作业参数进行了优选,为提高植保无人机施药雾滴在火龙果树冠层的有效沉积分布,实现所选机型在火龙果树病虫害防控中的高效应用奠定了基础。  相似文献   

13.
为探究多旋翼植保无人机作业参数对火龙果树冠层雾滴沉积分布的影响,应用极飞P20多旋翼植保无人机对火龙果树进行喷雾作业,采用正交试验对主要作业参数(航线方向、作业高度与作业速度)进行优选。结果表明,植保无人机对火龙果树施药在航线平行于种植行、作业高度为1.5 m (距离冠层顶部高度)、作业速度为1.5 m·s-1条件下,雾滴在火龙果树各个冠层的雾滴沉积密度,覆盖率最大。极差分析结果显示,作业速度是雾滴沉积密度和火龙果树上层雾滴覆盖率的最主要影响因素;而作业高度是火龙果树中层、下层雾滴覆盖率和雾滴分布均匀性的最主要影响因素,当作业高度为1.5 m 时雾滴分布均匀性最好。根据P20多旋翼植保无人机喷雾在火龙果树冠层的雾滴沉积分布情况,对植保无人机的作业参数进行了优选,为提高植保无人机施药雾滴在火龙果树冠层的有效沉积分布,实现所选机型在火龙果树病虫害防控中的高效应用奠定了基础。  相似文献   

14.
  目的  针对结构较为复杂的并联式多轴联动的新型木工带锯送料平台加工精度较低,控制参数无法优化,有多种不确定因素影响精度等问题。结合遗传算法寻优速度快和递归神经网络具有抑制不确定性因素的优点,设计一种将递归神经网络和自适应遗传算法结合的全局优化的控制策略。  方法  分析送料平台结构和误差产生来源,从而建立了相应的误差源模型;结合自适应遗传算法优化RNN网络参数进而对PID参数进行优化,通过Matlab和Adams联合仿真的方法对该补偿控制策略进行验证,并与传统PID、遗传算法优化PID参数和RNN网络优化PID参数3种补偿控制算法进行对比;分析不同算法下控制参数、送料平台位移与角度变化曲线,并搭建了实际电路和控制器进行实验。  结果  分析仿真结果可知:该控制策略与其他3种控制策略相比,超调量最小,响应最快,大约在0.6 s达到稳定,且其在外部干扰下,更快达到稳定,大约0.3 s达到稳定。经过该控制策略补偿后,Y方向的偏移误差从补偿前6 mm降低至小于3 mm,X方向的偏移误差从6 mm降低到2 mm,倾斜角误差从5.5°减小至3°,平台轨迹曲线大部分曲线段与目标曲线完全重合;传统PID控制时,Y方向的偏移误差为6 mm,X方向的偏移误差6 mm,倾斜角误差5.5°,平台轨迹曲线与目标曲线偏差较大;遗传算法优化PID参数控制时,Y方向的偏移误差从补偿前6 mm降低至小于4.8 mm,X方向的偏移误差从6 mm降低到5 mm,倾斜角误差从5.5°减小至4.5°,平台轨迹曲线部分曲线段与目标曲线重合;RNN网络优化PID参数控制时,Y方向的偏移误差从补偿前6 mm降低至小于4.5 mm,X方向的偏移误差从6 mm降低到4.8 mm,倾斜角误差从5.5°减小至4°,平台轨迹曲线部分曲线段与目标曲线重合。  结论  该方法与其他3种方法相比,响应速度快,超调量小,具有很好的抗干扰性能和较强的鲁棒性,且可有效补偿误差,提高其运动精度,满足驱动要求。   相似文献   

15.
航空喷施与人工喷施方式对水稻施药效果比较   总被引:9,自引:2,他引:7       下载免费PDF全文
【目的】找出小型无人直升机航空喷施雾滴在水稻植株的沉积分布规律,并比较农用无人机航空喷施方式和人工喷施方式的不同。【方法】通过喷施试验研究了市场上主流的2种不同型号无人机(油动单旋翼和电动单旋翼小型无人直升机)、不同作业参数对水稻冠层雾滴沉积分布结果的影响,并比较了不同农用无人机航空喷施方式和人工喷施方式的效果和效率。【结果】航空喷施方式下的作业参数对雾滴沉积量和穿透性均有着相同的影响趋势,均表现出作业速度越慢,雾滴在植株间的沉积量越多,穿透性越好;作业高度越低,沉积量越多,但穿透性较差。但由于不同类型无人机旋翼风场强度的不同,油动单旋翼小型无人直升机喷施作业时作业高度对雾滴的沉积均匀性影响明显,而电动单旋翼小型无人直升机喷施作业时作业速度对雾滴的沉积均匀性影响明显。人工喷施作业的雾滴在水稻植株上、中、下3层的沉积均匀性最差,且雾滴在水稻植株间的穿透性也最差,为110.42%,人工喷施雾滴大部分都沉积在植株上层,只有3.27%的药液量到达植株的底部,而航空喷施作业有10%~30%的药液量能到达植株的底部。【结论】从不同喷施作业方式的效果和效益来看,航空喷施雾滴沉积效果优于人工喷施雾滴沉积效果,作业效率约为人工喷施方式的10倍,且成本低,效益高。  相似文献   

16.
基于BP神经网络的淤地坝次降雨泥沙淤积预测   总被引:1,自引:0,他引:1  
为了探求淤地坝在次降雨情况下的泥沙淤积量,以黄土高原丘陵区花梁坝实测数据为例,引用3层前馈型BP网络建模方法,对侵蚀性降雨条件下淤地坝泥沙淤积量进行了研究。在模型输入层变量分别为最大30min降雨强度(mm/min)、降雨总量(mm)、平均降雨强度(mm/min)和降雨侵蚀力(mm2.min),输出层变量为淤地坝泥沙淤积量,根据降雨资料和淤积信息对应关系所计算的实际资料,对网络进行了训练,并运用训练后的网络进行模拟和预测。结果表明,BP网络的绝对拟合误差和相对拟合误差均较低,绝对拟合误差最大为-0.0061万t,相对拟合误差最大为-1.2946%。同时,BP网络还具有较高的预测精度,泥沙淤积预测的绝对误差最大为-0.039万t,相对误差最大为-5.5901%。该模型的建立为土壤侵蚀产沙规律的研究提供了一条新途径。  相似文献   

17.
方杰  张杰  马娟  田翔  于秀针  冯斌 《新疆农业科学》2023,60(4):1003-1010
【目的】设计饲料配制控制系统,并采用神经网络PID优化算法实现对配料精度的提高。【方法】以西门子S-200 smart型PLC为主控设计饲料配制控制系统,针对现有常规PID算法的控制策略存在超调大、收敛慢等缺陷和BP神经网络梯度下降过程容易出现局部最小化问题,提出以附加动量项的BP神经网络PID算法实现称重误差的降低。【结果】基于动量项的梯度下降法建立的BP神经网络PID算法模型解决了参数自学习整定问题,在响应速度上该算法与PID算法对比为3∶1,试验后平均精度99.6%。并在收敛速度和改善超调现象具有更高效的表现。【结论】配料系统经算法优化后误差得到有效控制。  相似文献   

18.
结合神经网络和粒子群算法(PSO)对油菜籽干燥工艺进行优化:采用BP神经网络建立油菜籽平均水分下降速率和发芽率与干燥温度、初始含水率、真空度之间的三层网络预测模型,利用试验样本数据计算并确定预测模型的网络权值及阈值,再采用PSO算法进行参数优化。试验验证结果表明,对比BP网络模型和PSO–BP模型,发现BP网络仿真值相对误差最大值为4.5%,而PSO–BP仿真值最大相对误差小于2.93%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号